

XSLT Quickly

BOB DUCHARME

MANN I NG

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
32 Lafayette Place Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2001 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the book,
and Manning Publications was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books we publish printed on acid-free paper, and we exert our best efforts to
that end.

Library of Congress Cataloging-in-Publication Data
DuCharme, Bob

XSLT Quickly/Bob DuCharme.
p. cm.

Includes bibliographical references and index.
ISBN 1-930110-11-1
1. XSLT (Computer language program) I. Title

QA76.X58 D83 2001
005.7’2—dc21 2001030931

CIP

Manning Publications Co. Copyeditor: Adrianne Harun
32 Lafayette Place Typesetter: Syd Brown
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02 01

contents

preface ix
acknowledgments xi
about this book xii
about the cover illustration xvi

Part 1 Getting started with XSLT 1

1 A brief tutorial 3
1.1 What is XSLT (and XSL, and XPath)? 3

XSLT and alternatives 5 ✧ Documents, trees,
and transformations 6

1.2 A simple XSLT stylesheet 8
Template rules 9 ✧ Running an XSLT processor 11
An empty stylesheet 12

1.3 More element and attribute manipulation 13
Manipulating attributes 14 ✧ Attribute value templates 15

1.4 Summing up the tutorial 16

Part 2 XSLT user’s guide: How do I work with... 21

2 XPath 23
2.1 Location paths, axes, node tests, and predicates 24

2.2 Axes 24
The child, parent, and attribute axes 25 ✧ ancestor and
ancestor-or-self 27 ✧ preceding-sibling and following-sibling 29
preceding and following 32 ✧ descendant and
descendant-or-self 35 ✧ self 39 ✧ namespace 40
v

Syd Brown

2.3 Node tests 41

2.4 Predicates 43

3 Elements and attributes 47
3.1 Adding new elements to the result tree 47

3.2 Changing element names for the result tree 50

3.3 Parent, grandparent, sibling, uncle, and other
relative elements: getting their content and attributes 50

3.4 Previous, next, first, third, last siblings 53

3.5 Converting elements to attributes for the result tree 55

3.6 Copying elements to the result tree 57

3.7 Counting elements and other nodes 61

3.8 Deleting elements from the result tree 63

3.9 Duplicate elements, deleting 64

3.10 Empty elements: creating, checking for 67

3.11 Moving and combining elements for the result tree 69
Reordering an element’s children with xsl:apply-templates 69
Moving text with xsl:value-of 71

3.12 Selecting elements based on: element name,
content, children, parents 72

3.13 Adding new attributes 77

3.14 Converting attributes to elements 79

3.15 Getting attribute values and names 80

3.16 Testing for attribute existence and for
specific attribute values 81

3.17 Reusing groups of attributes 82

4 Advanced XML markup 84
4.1 Comments 84

Outputting comments 84 ✧ Reading and using
source tree comments 86

4.2 Entities 87

4.3 Namespaces 92
Namespaces and your result document 94
Namespaces and stylesheet logic 98

4.4 Images, multimedia elements, and other unparsed entities 104
vi CONTENTS

4.5 Processing instructions 106
Outputting processing instructions 106 ✧ Reading and
using source tree processing instructions 108

5 Programming issues 110
5.1 Control statements 110

Conditional statements with “If“ and “Choose“
(case) statements 110 ✧ Curly braces:
when do I need them? 115 ✧ “For” loops, iteration 118

5.2 Combining stylesheets with include and import 126
xsl:include 126 ✧ xsl:import 128

5.3 Named templates 132

5.4 Debugging 133
Runtime messages, aborting processor execution 134
Keeping track of your elements 137 ✧ Tracing a
processor’s steps 140 ✧ Listing the nodes in an
XPath expression 142

5.5 Extensions to XSLT 143
Extension elements 143 ✧ Using built-in
extension functions 146

5.6 Numbers and math 149

5.7 Strings 153
Extracting and comparing strings 153 ✧ Search and replace 160

5.8 Variables and parameters: setting and using 164
Variables 164 ✧ Parameters 169

5.9 Declaring keys and performing lookups 173

5.10 Finding the first, last, biggest, and smallest 178

5.11 Using the W3C XSLT specification 182
Pairs of confusing related terms 183 ✧ Other confusing terms 185

6 Specialized input & output 187
6.1 HTML and XSLT 187

HTML as input 188 ✧ HTML as output 190

6.2 Browsers and XSLT 192
Internet Explorer 194 ✧ Netscape Navigator 194

6.3 Multiple input documents 195

6.4 Using modes to create tables of contents
and other generated lists 199

6.5 Non-XML output 202
CONTENTS vii

6.6 Numbering, automatic 205

6.7 Sorting 215

6.8 Stripping all markup from a document 224

6.9 Valid XML output: including DOCTYPE declarations 225

6.10 XML declarations 228

6.11 Whitespace: preserving and controlling 229
xsl:strip-space and xsl:preserve-space 230 ✧ Indenting 233
Adding and removing whitespace with xsl:text 236
Adding tabs to your output 239 ✧ Normalizing space 241

6.12 Generating IDs and links 243

6.13 XSL and XSLT: creating Acrobat files
and other formatted output 247

6.14 Splitting up output into multiple files 253

Part 3 Appendices 257

A XSLT quick reference 259
A.1 Top-level elements 260

A.2 Instructions 263

A.3 No category 266

B Running XSLT processors 269
B.1 Running XSLT processors 269

B.2 Saxon 273

B.3 XT 274

B.4 iXSLT 275

B.5 Xalan-Java 276

B.6 Xalan-C++ 277

B.7 Sablotron 278

B.8 MSXSL 279

glossary 281
index 287
viii CONTENTS

preface

Perhaps the most astonishing thing about XML’s rapid growth is how this meta-
language came to be used for so much more than its inventors had imagined. What
started off as a subset of SGML designed for easier delivery to web browsers has
become the standard way to ship data between processors, computers, or busi-
nesses that need to share data but don’t have identical setups for their respective
information processing systems.

Much of the original excitement about XML assumed that DTDs (and eventu-
ally, schemas) would pop up to serve the data description needs of everyone who
wanted to share data. As it turned out, they each had different, specific needs, and joint
efforts to develop DTDs that satisfied multiple parties involved a huge amount of
work—often too much work.

Then the Extensible Stylesheet Language Transformations (XSLT) came along.
XSLT made it easy to specify the conversion of data that conforms to one schema, into
data that conforms to another. Free software that allows you to run these conversions
began appearing everywhere. Because XSLT is a W3C standard, like XML itself,
developers could be confident that no one company would start changing its syntax
solely to meet their marketing needs.

At the time, I had spent several years working with languages and tools that con-
verted SGML documents into other formats, so I had a pretty good idea of the basic
tasks that should be easy to perform when making such conversions.

The first time I saw an XSLT script, I thought it looked a little strange—it didn’t
look like a program, but like an odd XML document. Then I started playing with it.
Even as a beginner, I discovered that each time I set a goal, I usually got an XSLT script
to achieve my goal the first or second time I ran the script.

XSLT was clearly a language that could make users of XML very productive. As
more XSLT processors appeared, I saw that XSLT was going to become popular
quickly, and although no XSLT books were available at the time, I knew that there
would eventually be plenty of them.

As someone familiar with the tasks that XSLT was trying to achieve, even before
I was familiar with XSLT itself, I thought I had the right perspective to put together
a truly task-oriented explanation of how to get work done with XSLT, rather than just

listing all the features of its syntax and how to use each one. The result, I hope, is some-
thing that will enable developers with a broad range of skill sets to productively use
XSLT quickly.
x PREFACE

acknowledgments

I was fortunate to have extensive help in the tech reviewing of this book from a sharp-
eyed cast of XSLT folk: first and foremost, Mario Jeckle and Dave Pawson, who in
addition to reading the text, ran all the examples and reported back to me on the suc-
cess or problems of doing so. Other patient reviewers, many of whom saw the manu-
script more than once as I progressed through it, also made many excellent
suggestions: David Marston of the Xalan team, Laurie Mann, Aidan Killian, Juergen
Baier, Phil Gooch, David Halsted, Jean-Francois Halleux, Darrin Bishop, Matthew
Bentley, Karri Mikola, Dan Vint, Jim Gabriel, Bill Humphries, Olivier Gerardin, and
Evan Lenz. Mike J. Brown and Michael Dyck also made very helpful suggestions. Of
the good people at Manning, I’d like to start with review editor, Ted Kennedy, who
assembled and coordinated the stellar cast mentioned so far, and Marjan Bace, pub-
lisher, as well as Syd Brown, Mary Piergies, and Adrianne Harun.

Lastly, I owe the most thanks and love to my wife Jennifer and my daughters,
Madeline (sitting on the piano bench behind me reading a Nancy Drew book as I
write this) and Alice (currently enjoying her bath enough to demand more time from
Jennifer before getting out), for putting up with my constant attempts to squeeze in
some time on one computer or the other to write this book.

about this book

This book is for people who need to learn XSLT quickly. While it isn’t meant to be a
complete reference of everything you might want to do in XSLT, it will show you the
twenty percent of XSLT that you’ll probably use eighty percent of the time. It also
includes a user’s guide for looking up simple solutions to the most common problems
you will encounter when doing more advanced XSLT development.

The two parts of the book address the two parts of this goal.
Part 1 is a step-by-step tutorial that will bring you up to speed with basic concepts

and document manipulation techniques necessary for the most common XSLT tasks.
More importantly, part 1 will give you the background to understand part 2.

Part 2 is a task-oriented user’s guide to various issues you may need to tackle in
XSLT. Instead of being organized by XSLT features (for example, attribute value tem-
plates, namespace aliasing, and the document() function), part 2 is organized by the
goals of your tasks (for example, converting elements to attributes, writing stylesheets
to create other stylesheets, and reading in multiple documents at once). This format
will make it easier for readers who don’t already know XSLT to find solutions to their
stylesheet development problems.

Unlike part 1, part 2 is not meant to be read from start to finish. It’s a place to
find complete answers to specific problems. If a section seems repetitive in places, it’s
only to ensure that each section can stand on its own. For example, certain techniques
basic to both deleting elements and moving elements are explained in both sections.

When you do know a particular XSLT concept or specialized element type but
are not sure how to use it, the book’s glossary and index will help you find the expla-
nation you need. For example, looking up the document() function in the index will
point you to the section in part 2 on reading multiple documents at the same time.

WHAT YOU SHOULD ALREADY KNOW
This book assumes that if you’re interested in transforming XML documents, you’re
already familiar with the basics of XML: elements, attributes, well-formedness, and
entity references. Readers who want to know how XSLT handles more complex XML
topics such as CDATA, namespaces, and unparsed entities will find these covered in
part 2, chapter 4, “Advanced XML markup,” on page 84.

HTML is simpler than XML, and because XSLT is so popular for converting
XML to HTML, this book assumes a basic familiarity with HTML: the p element
used for paragraphs, the img element used for images, b for bolding, i for italicizing,
the h1, h2, and h3 elements used for different levels of headers, and the a element
used for linking.

SAMPLE CODE
For more updated information on the book’s material, as well as a downloadable zip
file with all the sample code and input, see http://www.manning.com/ducharme or
http://www.snee.com/XSLTQuickly.

Each stylesheet (or stylesheet excerpt) in the book begins with an XML comment
listing its filename in the zip file. If the book shows you input created for and output
created by that stylesheet, the comment tells you their filenames as well. For example,
the following comment at the beginning of a stylesheet means that the stylesheet has
the name xq1023.xsl in the zip file and that it converts the zip file’s xq1022.xml file
into xq1024.xml:

<!-- xq1023.xsl: converts xq1022.xml into xq1024.xml -->

Instead of showing the xsl:stylesheet start- and end-tags around each example, the
book often shows only the template rules (the xsl:template elements) that dem-
onstrate the topic at hand. The zip file’s version of the example will be a complete,
working stylesheet so that you can try the example. In these stylesheet files, I used
processing instructions to show the beginning and end of the part of the stylesheet
that I wanted to appear in the book. When you see an example like this in the book,

<!-- xq1023.xsl: converts xq1022.xml into xq1024.xml -->

<xsl:template match="wine">

 <xsl:value-of select="price"/>

</xsl:template>

the xq1023.xsl disk file will look more like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:output method="xml" omit-xml-declaration="yes" indent="no"/>

 <?startSampleFile ?>

 <!-- xq1023.xsl: converts xq1022.xml into xq1024.xml -->

 <xsl:template match="wine">

 <xsl:value-of select="price"/>

 </xsl:template>

 <?endSampleFile ?>

</xsl:stylesheet>
A B O U T T H IS BO O K xiii

��� The sample output shown in the book’s examples sometimes has more car-
riage returns and other spacing between elements than you’ll actually see
when you apply the corresponding stylesheet to the included sample docu-
ment. I added these to make the sample output more readable in the book,
and only did so where it wouldn’t make any difference to an application
(particularly an XML application) reading one of these files.

Many of the book’s samples refer to the DocBook, a DTD maintained by the Organi-
zation for the Advancement of Structured Information (OASIS) that has been popu-
lar for technical documentation since before XML was invented. (It began its career
as an SGML DTD.) The XML version of DocBook lets you create simple and com-
plex documents, and stylesheets are available to convert them to HTML and Acrobat
files. I use it in examples for two reasons: First, it’s the DTD I’m using to write this
book. Secondly, and more importantly, you don’t even need to know the DTD to
understand the structure of a simple DocBook document like the following, because
the element names make the structure clear enough:
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.0beta1//EN"

 "docbook.dtd">

<chapter><title>My Chapter</title>

 <para>This paragraph introduces the chapter's sections.</para>

 <sect1><title>Section 1 of "My Chapter"</title>

 <para>Here is the first section's first paragraph.</para>
 <para>Here is the first section's second paragraph.</para>

 </sect1>

 <sect1><title>Section 2 of "My Chapter"</title>
 <para>Here is the first section's first paragraph.</para>

 <sect2><title>Section 2.2</title>
 <para>This section has a subsection.</para>

 </sect2>

 </sect1>

</chapter>

(See http://www.docbook.org for more on DocBook and links to the DTD itself and
its stylesheets.)

Finally, sample documents showing portions of a poem use excerpts from John
Milton’s “Paradise Lost,” with spelling rendered in the modern style.

CONVENTIONS USED IN THIS BOOK
The following typographical conventions are used throughout the book:

Code examples and fragments are set in a Courier fixed-width font. Parts of the
code examples referenced by the accompanying descriptions may be set in boldface
to draw attention to them, but this has no bearing on how they work. Downloaded
versions of the same samples will not have markup to indicate the bolding.

XML element and attribute names are also set in a Courier fixed-width font.
xiv AB O U T TH IS BO O K

AUTHOR ONLINE
Purchase of XSLT Quickly includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to http://www.manning.com/ducharme.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the authors can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the AO remains voluntary (and unpaid). We suggest you try
asking the authors some challenging questions, lest his interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.
A B O U T T H IS BO O K xv

about the cover illustration

The figure on the cover of XSLT Quickly is a “Soldado Japon de Cavalleria” or Japa-
nese Cavalryman. While the details of his military rank and assignment are lost in
historical fog, there is no doubt that we are facing a man of courage and prowess. The
illustration is taken from a Spanish compendium of regional dress customs first pub-
lished in Madrid in 1799. The book’s title page informs us:

Coleccion general de los Trages que usan actualmente todas las Nacio-
nas del Mundo desubierto, dibujados y grabados con la mayor exac-
titud por R.M.V.A.R. Obra muy util y en special para los que tienen
la del viajero universal

Which we loosely translate as:

General Collection of Costumes currently used in the Nations of the
Known World, designed and printed with great exactitude by
R.M.V.A.R. This work is very useful especially for those who hold
themselves to be universal travelers

Although nothing is known of the designers, engravers, and artists who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing.
The “Soldado Japon de Cavalleria” is just one of a colorful variety of figures in this
collection which reminds us vividly of how distant and isolated from each other the
world’s towns and regions were just 200 years ago. Dress codes have changed since
then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps we have traded a
cultural and visual diversity for a more varied personal life—certainly a more varied
and interesting world of technology.

At a time when it can be hard to tell one computer book from another, Manning
celebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago—brought back to life
by the pictures from this collection.

P A R T 1111
Getting started
with XSLT

This tutorial will acquaint you with the XSLT techniques necessary to perform basic
transformation operations as you convert one document into another: reordering,
renaming and deleting elements, renaming and deleting attributes, converting
attributes into elements and elements into attributes, and selecting elements for pro-
cessing based on their attribute values.

There’s much more to XSLT than these operations, as the rest of this book illus-
trates, but these operations will take you far in tasks such as:

• converting your company’s XML data to conform to an industry standard

• converting XML data that conforms to an industry standard schema or DTD,
into a form that works with your company’s systems

• converting your company’s XML into a form that a client or supplier can under-
stand as part of an XML-based electronic transaction

• converting a client or supplier’s XML so that it works with your company’s sys-
tems as part of an electronic transaction

All of these tasks usually involve taking a subset of some data, rearranging the order of
the pieces, and renaming them. Once you can do these operations, you’re ready to take
part in the assembly of some of the most important parts of an ecommerce system.

C H A P T E R 1

A brief tutorial

1.1 What is XSLT (and XSL, and XPath)? 3
1.2 A simple XSLT stylesheet 8
1.3 More element and attribute manipulation 13
1.4 Summing up the tutorial 16
1.1 WHAT IS XSLT (AND XSL, AND XPATH)?
Extensible Stylesheet Language Transformations (XSLT) is a language that lets you
convert XML documents into other XML documents, into HTML documents, or
into almost anything you like. When you specify a series of XSLT instructions for
converting a class of XML documents, you do so by creating a “stylesheet,” an XML
document that uses specialized XML elements and attributes that describe the
changes you want made. The definition of these specialized elements and attributes
comes from the World Wide Web Consortium (W3C), the same standards body
responsible for XML and HTML.

Why is XSLT necessary? XML’s early users were excited about their new ability
to share information, but they gradually realized that sharing this information often
assumed that both sharing parties used the same schema or DTD—a lot to assume.
Assembling a schema that both parties could agree on was a lot of trouble, especially
if they didn’t need to exchange information often. XSLT solves this problem by pro-
viding an easy, W3C-sanctioned way to convert XML documents that conform to one
schema into documents that conform to others, making information much easier to
pass back and forth between different systems.
3

XSLT was originally part of the Extensible Stylesheet Language (XSL). In fact, XSLT
is still technically a part of XSL. The XSL specification describes XSL as a language
with two parts: a language for transforming XML documents and an XML vocabu-
lary for describing how to format document content. This vocabulary is a collection
of specialized elements called “formatting objects,” which specify page layout and
other presentation-related details about the text marked up with these elements’ tags:
font family, font size, margins, line spacing, and other settings.

Because a powerful formatting language should let you rearrange your input
document in addition to assigning these presentation details, the original XSL spec-
ification included specialized elements that let the stylesheet delete, rename, and reor-
der the input document’s components. As they worked on this collection of elements,
the W3C XSL Working Group saw that it could be useful for much more than con-
verting documents into formatting object files—that it could convert XML docu-
ments into almost anything else. They called this transformation language XSLT and
split it out into its own separate specification, although the XSL specification still said
that everything in the XSLT specification was considered to be part of the XSL spec-
ification as well.

One great feature of XSLT is its ability, while processing any part of a document,
to grab information from any other part of that document. The mini-language devel-
oped as part of XSLT for specifying the path through the document tree from one part
to another is called “XPath.” XPath lets you say things like “get the revisionDate
attribute value of the element before the current element’s chapter ancestor ele-
ment.” This ability proved so valuable that the W3C also broke XPath (see figure 1.2)
out into its own specification so that other W3C specifications could incorporate this
language. For example, an XLink link can use an XPath expression as part of an
XPointer expression that identifies one end of a link.

Figure 1.1

XSLT stylesheets can automate the

conversion of the same input into

multiple output formats.
4 CHAPTER 1 A BRIEF TUTORIAL

1.1.1 XSLT and alternatives

Other ways exist for transforming XML documents. These options fall into two
categories:

• XML-related libraries added to general purpose programming languages such as
Java, Perl, Visual Basic, Python, and C++

• languages such as Omnimark and Balise designed specifically for manipulating
XML (and, typically, SGML) documents

So why use XSLT? For one thing, it’s a standard. This doesn’t necessarily make XSLT
a good language, but it does mean that multiple vendors worked on it together, each
contributed to its design, and each has committed to supporting it in their products.
XSLT wasn’t invented by some guy who started a company to sell it and then added
and dropped features and platform support over the years as it fit the needs of the
company’s bigger customers. XSLT’s features and platform support reflect a broad
range of interests, and the wide availability of open source implementations make it
easy for most programmers to put together their own customized XSLT processors
with any features they may want to add.

Being a W3C standard also means that XSLT fits in with other W3C standards
and that future W3C standards will also fit in with it. The phrase “standards-driven”
is nearing tiresome buzzword status these days as more products take advantage of
XML; unfortunately, many ignore important related W3C standards. For example,
one XML transformation product has various specialized element types whose names
you’re not allowed to use for your own element types. If this product declared and
used a namespace for their specialized element types they wouldn’t need to impose
such arbitrary constraints on your application development—for example, if they
declared a URI and a prefix for this set of element and attribute names, and then used
that prefix in the document with those names to prevent an XML parser from confus-
ing them with other elements and attributes that may have the same name.

Figure 1.2 The W3C released the first Working Draft of XSL in August 1998,

split XSLT out into its own Working Draft in April of 1999, then split XPath

out from XSLT into its own working Draft in July 1999.
WHAT IS XSLT (AND XSL, AND XPATH)? 5

Another advantage of XSLT over other specialized XML transformation languages
is that a series of XSLT document transformation instructions are themselves stored as
an XML document. This gives XSLT implementers a big head start because they can
use one of the many available XML parsers to parse their input. It also means that
developers learning XSLT syntax don’t need to learn a completely new syntax to write
out their instructions for the XSLT processor. They must just learn new elements and
attributes that perform various tasks.

1.1.2 Documents, trees, and transformations

Speaking technically, an XSLT transformation describes how to transform a source tree
into a result tree. Informally, we talk about how XSLT lets you transform documents into
other documents, but it’s really about turning one tree in memory into another one. Why?

Most XSLT processors read a document into the source tree, perform the transfor-
mations expressed by the XSLT stylesheet to create a result tree, and write out the result
tree as a file, with the net result of converting an input XML document into an output
document. Nothing in the XSLT specification requires these processors to read and write
disk files; by leaving files and input/output issues out of it, the spec offers more flexibility
in how XSLT is used. Instead of an XML file sitting on your hard disk, the input may
come from a Document Object Model (DOM) tree in memory or from any process
capable of creating a source tree—even another XSLT transformation whose result tree
is the source tree for this new transformation. (The DOM is a W3C standard for rep-
resenting and manipulating a document as a tree in memory.) How would you tell a pro-
cessor to treat the result tree of one transformation as the source tree of another? See the
documentation for your XSLT processor. As I said, the XSLT spec deliberately avoids
input and output issues, so that’s up to the people who designed each processor.

Similarly, the processor doesn’t have to write out the result tree as a disk file, but
can store it as a DOM tree, pass it to a new XSLT stylesheet that treats that result tree
as the source tree of a new transformation to perform, or pass it along for use by
another program via some means that hasn’t been invented yet. Figure 1.3 shows these
relationships when using XSLT to create an HTML file from a poem document type.

Figure 1.3

Document trees, XSLT,

and XSLT processors
6 CHAPTER 1 A BRIEF TUTORIAL

Dealing with an input tree instead of an input document also gives you an important
advantage that XML developers get from DOM trees: at any given point in your pro-
cessing, the whole document is available to you. If your program sees a word in the
document’s first paragraph that’s defined in the glossary at the end, it can go to the
glossary to pull out the term’s definition. Using an event-driven model such as the
Simple API for XML (SAX) to process a document instead of a tree-based model like
XSLT uses, your program would process each XML element as it read the element in.
While doing this, if you want to check some information near the end of your docu-
ment when reading an element in the beginning, you need to create and keep track of
data structures in memory, which makes your processing more complicated.

��� When a discussion of XSLT issues talks about a source tree and a result tree,
you can think of these trees as temporary representations of your input and
output documents.

Not all nodes of a document tree are element nodes. A diagram of the tree that would
represent this document

<?xml-stylesheet href="article.xsl" type="text/xsl"?>

<article>
 <!-- here is a comment -->

 <title author="bd">Sample Document</title>
 <para>My 1st paragraph.</para>

 <para>My 2nd paragraph.</para>
</article>

shows that there are nodes for elements, attributes, processing instructions, com-
ments, and the text within elements. (There are also nodes for namespaces, but this
document has no namespace nodes.)

It’s easy to match up the parts of the tree with the parts of the corresponding docu-
ment, except that it might appear that the document has too many “text” nodes. The
tree diagram shows text between the comment and the title element, and text

Figure 1.4 A document tree with several different node types
WHAT IS XSLT (AND XSL, AND XPATH)? 7

between the two para elements; where is this text in the document? You can’t see this
text, but it’s there: it’s the carriage returns that separate those components of the doc-
ument. If the two para elements had been written as one line, like this,

<para>My 1st paragraph.</para><para>My 2nd paragraph.</para>

no text node would exist between those two elements, and you wouldn’t see a text
node between them in the tree diagram. (See section 6.11, “Whitespace: preserving
and controlling,” page 229 for more on this.)

You also might wonder why, if article is the root element of the document,
it’s not the root node of the tree. According to XSLT’s view of the data (its “data
model”), the root element is a child of a predefined root node of the tree (shown as a
slash in the diagram) because it may have siblings. In the example above, the process-
ing instruction is not inside the article element, but before it. It is therefore not a
child of the article element, but its sibling. Representing both the processing
instruction and the article element as the children of the tree’s root node makes
this possible.

1.2 A SIMPLE XSLT STYLESHEET

An XSLT transformation is specified by a well-formed XML document called a
stylesheet. The key elements in a stylesheet are the specialized elements from the
XSLT namespace. (A namespace is a unique name for a given set of element and
attribute names. Their use is usually declared in an XML document’s document ele-
ment with a short nickname that the document uses as a prefix for names from that
namespace.) When an XSLT processor reads one of these stylesheets, it recognizes
these specialized elements and executes their instructions.

XSLT stylesheets usually assign “xsl” as the prefix for the XSLT namespace (iron-
ically, XSL stylesheets usually use the prefix “fo” to identify their “formatting
objects”), and XSLT discussions usually refer to these element types using the “xsl”
prefix. This way, when something refers to the xsl:text or xsl:message ele-
ments you can assume that they mean the text and message element types from the
XSLT namespace and not from somewhere else.

An XSLT stylesheet doesn’t have to use “xsl” as the namespace prefix. For exam-
ple, if the stylesheet below began with the namespace declaration

xmlns:harpo="http://www.w3.org/1999/XSL/Transform"

the stylesheet’s XSLT elements would need names like harpo:text and harpo:
message for an XSLT processor to recognize them and perform their instructions.

The following stylesheet demonstrates many common features of an XSLT stylesheet.
It’s a well-formed XML document with a root element of xsl:stylesheet. (You can
also use name xsl:transform for your stylesheet’s root element, which means the
same thing to the XSLT processor.):
<!-- xq15.xsl: converts xq16.xml into xq17.xml -->
8 CHAPTER 1 A BRIEF TUTORIAL

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:template match="year">

 <vintage>
 <xsl:apply-templates/>

 </vintage>
 </xsl:template>

 <xsl:template match="price">

 </xsl:template>

 <!-- Copy all the other elements and attributes, and text nodes -->
 <xsl:template match="*|@*|text()">

 <xsl:copy>
 <xsl:apply-templates select="*|@*|text()"/>

 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

1.2.1 Template rules

An XSLT stylesheet has a collection of template rules. Each template rule has a pat-
tern that identifies the source tree nodes to which the pattern applies and a template
that is added to the result tree when the XSLT processor applies that template rule to
a matched node.

In a stylesheet document, the template rules that comprise a stylesheet are repre-
sented as xsl:template elements; the stylesheet above has three. The value of each
xsl:template element’s match attribute is the pattern that gets matched against
source tree nodes. The element’s content—that is, everything between its start- and end-
tag—is the template that gets added to the result tree for each source tree node that cor-
responds to the match pattern. An xsl:template element essentially tells the XSLT
processor, “as you go through the source tree, when you find a node of that tree whose
name matches the value of my match attribute, add my contents to the result tree.”

For example, the first template rule in
the preceding stylesheet tells the XSLT
processor what to do when it sees a year
element node as the child of another node
in the source tree. (The “year” attribute
value is actually an abbreviation of
“child::year.”) The template rule has one element as its template to add to the result
tree: a vintage element. This element contains an xsl:apply-templates ele-
ment that tells the processor to apply any relevant templates to the children of the
matched element node (in this case, year). The ultimate result of this template is the
contents of the input year element surrounded by vintage tags—in effect, renam-
ing the source tree’s year element to a vintage element for the result tree.
Figure 1.5 shows where the pattern and template are in one example of a template rule.

Figure 1.5 The two parts of a template rule
A SIMPLE XSLT STYLESHEET 9

The specialized elements in a template from the XSLT namespace are sometimes
called “instructions,” because they are instructions to the XSLT processor to add some-
thing to the result tree. What does this make the elements in the template that don’t use
the “xsl” namespace prefix, such as the vintage element? The stylesheet is a legal, well-
formed XML document, and the vintage element is an element in that stylesheet.
Because this element is not from the XSLT namespace, the XSLT processor will pass it
along just as it is to the result tree. In XSLT, this is known as a “literal result element.”

Like all template rules, the second xsl:template rule in the stylesheet on
page 9 tells the XSLT processor “if you find a source tree node whose name matches
the value of my match attribute, add my contents to the result tree.” The string
“price” is the pattern to match, but what are the template’s contents? There are no con-
tents; it’s an empty element. So, when the XSLT processor sees a price element in
the source tree, the processor will add nothing to the result tree—in effect, deleting
the price element.

Because the stylesheet is an XML document, the template rule would have the
same effect if it were written as a single-tag empty element, like this:

<xsl:template match="price"/>

XSLT has other ways to delete elements when copying a source tree to a result tree,
but a template rule with no template is the simplest.

Unlike the first two template rules, the third one is not aimed at one specific ele-
ment type. It has a more complex match pattern that uses some XPath abbreviations
to make it a bit cryptic but powerful. The pattern matches any element, attribute, or
text node, and the xsl:copy and xsl:apply-templates elements copy any
element, attribute, or text node children of the selected nodes to the result tree. Actu-
ally, the pattern doesn’t match any element—an XSLT processor uses the most specific
template it can find to process each node of the source tree, so it will process any
year and price elements using the stylesheet’s templates designed to match those
specific tree nodes. Because the processor will look for the most specific template it
can find, it doesn’t matter whether the applicable template is at the beginning of the
stylesheet or at the end—the order of the templates in a stylesheet means nothing to
an XSLT processor.

��� If more than one xsl:template template rule is tied for being most ap-
propriate for a particular source tree node, the XSLT processor may output
an error message or it may just apply the last one to the node and continue.

The values of all of the xsl:template elements’ match attributes are considered
“patterns.” Patterns are like XPath expressions that limit you to using the child and
attribute axes, which still gives you a lot of power. (see chapter 2, “XPath,” on
page 23, for more on axes and the abbreviations used in XPath expressions and pat-
terns.) The “year” and “price” strings are match patterns just as much as “*|@*|text()”
is, even though they don’t take advantage of any abbreviations or function calls.
10 CHAPTER 1 A BRIEF TUTORIAL

That’s the whole stylesheet. It copies a source tree to a result tree, deleting the
price elements and renaming year elements to vintage elements. For example,
the stylesheet turns this wine element
<wine grape="chardonnay">
 <product>Carneros</product>

 <year>1997</year>
 <price>10.99</price>

</wine>

into this:

<?xml version="1.0" encoding="utf-8"?>

<wine grape="chardonnay">
 <product>Carneros</product>

 <vintage>1997</vintage>

 </wine>

Although the price element was deleted, the carriage returns before and after it
were not, which is why the output has a blank line where the price element had
been in the input. This won’t make a difference to any XML parser.

This is not an oversimplified example. Developers often use XSLT to copy a doc-
ument with a few small changes such as the renaming of elements or the deletion of
information that shouldn’t be available at the document’s final destination.

1.2.2 Running an XSLT processor

The XSLT specification intentionally avoids saying “here is how you apply stylesheet
A to input document B in order to create output document C.” This leaves plenty of
flexibility for the developers who create XSLT processors. The input, output, and
stylesheet filenames might be entered in a dialog box; or they might be entered at a
command line; or they might be read from a file.

Many XSLT processors are designed to give a range of options when identifying
the inputs and outputs. Some are programming libraries which you can invoke from a
command line or call from within a program. For example, an XSLT processor supplied
as a Java class library often includes instructions for using it from a Windows or Linux
command line, but its real power comes from your ability to call it from your own Java
code. This way, you can write a Java program that gets the input, stylesheet, and output
filenames either from a dialog box that you design yourself, from a file sitting on a disk,
or from another XML file that your application uses to control your production pro-
cesses. Your program can then hand this information to the XSLT processor.

In fact, the input, stylesheet, and output don’t even have to be files. Your program
may create them in memory or read them from and write them to a process commu-
nicating with another computer. The possibilities are endless, because the input and
output details are separate from the transformation.

One example of a Java library that you can use from the command line or as part
of a larger Java application is Xalan (pronounced “Zalan”). This XSLT processor was
A SIMPLE XSLT STYLESHEET 11

written at IBM and donated to the Apache XML project (http://xml.apache.org). To
run release 2.0 of this particular XSLT processor from the command line with an input
file of winelist.xml, a stylesheet of winesale.xsl, and an output file of winesale.xml, enter
the following as one line (to fit on this page, the example below is split into two lines):

java org.apache.xalan.xslt.Process -in winelist.xml
 -xsl winesale.xsl -out winesale.xml

(This assumes that the appropriate Java libraries and system paths have been set up;
directions come with each Java processor.) For examples of how to run other XSLT
processors, see appendix A, “XSLT quick reference” on page 259.

1.2.3 An empty stylesheet

What would an XSLT processor do with a stylesheet that contained no template
rules? In other words, what effect would an empty stylesheet, such as the following,
have on an input document?

<!-- xq21.xsl: converts xq22.xml into xq23.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"/>

XSLT has several built-in default templates that tell the XSLT processor to output the
text content (or, in XML terms, the PCDATA) of the elements, leaving out the
attributes and markup. For example, the processor would turn this

<winelist date="20010626">

<wine grape="chardonnay">
 <product>Carneros</product>

 <year>1997</year>
 <price>10.99</price>

</wine>
</winelist>

into this:

<?xml version="1.0" encoding="UTF-8"?>

 Carneros
 1997

 10.99

Figure 1.6

The XSLT processor reads an input XML file and

an XSLT stylesheet and outputs another file

based on the stylesheet’s instructions.
12 CHAPTER 1 A BRIEF TUTORIAL

��� An XSLT processor’s default behavior adds an XML declaration as well.
This can be overridden with the optional xsl:output element if you
want to create HTML, plain text, or other non-XML output.

The built-in templates also tell the XSLT processor to apply any relevant templates to
the children of the elements being processed. (Otherwise, when the wine-list ele-
ment in the above example gets processed, no reason would exist for the XSLT pro-
cessor to do anything with the wine element.) If the stylesheet has no template for
one of the children, the most appropriate template for that child element may be the
same built-in template that the processor applied to the child’s parent. The XSLT
processor will do the same thing to the child: add any character data nodes to the
result tree and apply the most appropriate templates to any grandchildren elements.

1.3 MORE ELEMENT AND ATTRIBUTE MANIPULATION

In our first stylesheet, we saw that an xsl:apply-templates element with no
attributes tells the XSLT processor to apply any relevant templates to all the matched
node’s children. By using this element type’s select attribute, you can be pickier
about exactly which children of a node should be processed and in what order.

For example, this stylesheet
<!-- xq25.xsl: converts xq26.xml into xq27.xml -->

<xsl:template match="wine">
 <wine>

 <price><xsl:apply-templates select="price"/></price>
 <product><xsl:apply-templates select="product"/></product>

 </wine>
</xsl:template>

will turn this XML element
<wine grape="chardonnay">
 <product>Carneros</product>

 <year>1997</year>
 <price>10.99</price>

</wine>

into this:
<wine>
 <price>10.99</price>

 <product>Carneros</product>
</wine>

The stylesheet performs two important operations on this element:

• It moves the price element before the product element.

• It deletes the year element.

The first technique that we saw for deleting an element—using an empty template
for that element type—is often simpler than adding xsl:apply-templates ele-
ments for each of an element’s children (except the ones you want to delete). If you’re
MORE ELEMENT AND ATTRIBUTE MANIPULATION 13

reordering the children anyway, as with the preceding example, omitting an
xsl:apply-templates element for the elements in question can be an easier
way to delete them.

1.3.1 Manipulating attributes

We’ve seen how to delete and rename elements. How do you delete and rename
attributes? For example, how would you delete the following wine element’s price
attribute and rename its year attribute to vintage?
<wine price="10.99" year="1997">Carneros</wine>

We want the result to look like this:
<wine vintage="1997">Carneros</wine>

(Because an XML declaration is optional, it won’t make any difference if that shows
up as well.) The first template rule in the following stylesheet makes both of these
changes:

<!-- xq30.xsl: converts xq28.xml into xq29.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="wine">
<wine vintage="{@year}"> <!-- price attribute omitted -->

 <xsl:apply-templates/>
 </wine>

</xsl:template>

<!-- Copy all the other source tree nodes. -->
<xsl:template match="@*|node()">

 <xsl:copy>
 <xsl:apply-templates

 select="@*|node()"/>
 </xsl:copy>

</xsl:template>

</xsl:stylesheet>

Deleting the price attribute was easy: the template just left the attribute out of the
wine start-tag in the template. To rename the year attribute to vintage, the
year start-tag includes the attribute specification vintage="{@year}". The part
between the quotation marks says “put the value of the source tree wine element’s
year attribute here.” The @ character is shorthand for the XPath notation that
means “get the value of the attribute with this name,” and the curly braces tell the
XSLT processor that the expression they contain is an attribute value template—not a
literal string to appear in the result tree exactly as shown, but an expression to be eval-
uated and replaced with the result of the evaluation. If this attribute specification had
said vintage="{2+2}", the XSLT processor would have added vintage="4" to
the result tree. In the example, the processor understands the meaning of @ and plugs
in the appropriate attribute value between the quotation marks on the result tree.
14 CHAPTER 1 A BRIEF TUTORIAL

1.3.2 Attribute value templates

You can do a lot with attribute value templates. For example, these templates make
converting elements to attributes simple. The @ character makes it easy to insert an
attribute value where that value will be used as element content in the result. To dem-
onstrate this, let’s convert the grape attribute in the following to a product subele-
ment of the wine element. While we’re at it, we’ll convert the year subelement to a
vintage attribute.
<wine grape="Chardonnay">
 <product>Carneros</product>

 <year>1997</year>
 <price>10.99</price>

</wine>

The result should look like this:
<wine vintage="1997">
 <product>Carneros</product>

 <category>Chardonnay</category>
 <price>10.99</price>

</wine>

The following template converts the grape attribute into a category subelement
by using the @ character, and the message uses the xsl:value-of element to put
each grape attribute value between a pair of category start- and end-tags. (As
with attribute value templates, an XSLT processor takes what the xsl:value-of
element hands it in its select attribute, evaluates it, and adds the result to the
appropriate place on the result tree.)

<!-- xq33.xsl: converts xq31.xml into xq32.xml. -->

<xsl:template match="wine">
 <wine vintage="{year}">

 <product><xsl:apply-templates select="product"/></product>
 <category><xsl:value-of select="@grape"/></category>

 <price><xsl:apply-templates select="price"/></price>
 </wine>

</xsl:template>

To convert an element to an attribute, the same template uses an attribute value tem-
plate—the curly braces around “year”—to put the source tree wine element’s year
subelement after vintage= in the result tree’s wine element.

Another great trick is selective processing of elements based on an attribute value.
Because an XSLT processor applies the most specific template it can find in the
stylesheet for each source tree node, it will apply the first template in the following
stylesheet for each wine element that has a value of “Cabernet” in its grape attribute,
and the second for all the other wine elements. (The [@grape='Cabernet'] part
that specifies this is a special part of a match pattern or XPath expression called a “pred-
icate.”) The first template copies the element, while the second doesn’t. The output
will therefore only have wines with “Cabernet” as their grape value.
MORE ELEMENT AND ATTRIBUTE MANIPULATION 15

<!-- xq34.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="wine[@grape='Cabernet']">
 <xsl:copy><xsl:apply-templates/></xsl:copy>

</xsl:template>

<xsl:template match="wine"/>

<xsl:template match="@*|node()|processing-instruction()|comment()">
 <xsl:copy>

 <xsl:apply-templates
 select="@*|node()|processing-instruction()|comment()"/>

 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

How useful is this? Think about the importance of a database system’s ability to
extract subsets of data based on certain criteria. The creation of such customized
reports can be the main reason for developing a database in the first place. The ability
to generate customized publications and reports from your XML documents can give
you similar advantages in a system that uses those documents, because the more you
can re-use the document components in different permutations, the more value the
documents have.

For related information, see
• chapter 2, “XPath,” on page 23 for more on the use of expressions in square

brackets (“predicates”) to filter out a subset of the nodes that you want
• section 3.5, “Converting elements to attributes for the result tree,” page 55
• section 3.8, “Deleting elements from the result tree,” page 63
• section 3.14, “Converting attributes to elements,” page 79

1.4 SUMMING UP THE TUTORIAL

So far, this brief tour has only given you a taste of XSL’s capabilities—yet we’ve
already covered the features that will let you do four-fifths of your XSLT work! We’ve
shown you how to:

• delete elements
• rename elements

• reorder elements

• delete attributes

• rename attributes

• convert elements to attributes

• convert attributes to elements

• process elements based on an attribute’s value
16 CHAPTER 1 A BRIEF TUTORIAL

These are the most basic changes that you’ll want to make when converting XML
documents that conform to one schema or DTD into documents that conform to another.
If data is shared between two organizations that designed their data structures indepen-
dently, those organizations probably have many types of information in common—after
all, that’s why they’re sharing it. Yet, it’s also likely that they assigned different names to
similar information, or ordered their information differently, or stored extra information
that the other organization doesn’t need (or hasn’t paid for!). XSLT makes most of these
conversions painless and quick.

Before moving on, let’s review what the XSLT processor is doing now that you’ve
seen it in action a few times. Imagine that an XSLT processor has just started process-
ing the children of the chapter element in the following document,

<book><title>Paradise Lost</title>

 <chapter><title>The Whiteness of the Whale</title>
 <para>He lights, if it were Land that ever burned</para>

 <para>With solid, as the Lake with liquid fire</para>
 </chapter>

<chapter><title>The Castaway</title>
 <para>Nine times the Space that measures Day and Night</para>

 <para>To mortal men, he with his horrid crew</para>
 </chapter>

</book>

and it’s using a stylesheet with the following two template rules to process it:

<!-- xq37.xsl -->

 <xsl:template match="title">
 Title: <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="chapter/title">

 Chapter title: <xsl:apply-templates/>
 </xsl:template>

(The match pattern “chapter/title” in the second template element shows that this
template rule is for the title elements that are children of chapter elements. The
first is for all the other title elements.) The diagram in figure 1.7 shows the steps
that take place. The chapter title’s content is the only text node shown in the source
tree; the rest are omitted to simplify the diagram.
SUMMING UP THE TUTORIAL 17

1 It finds the first child of the chapter element, a title element node.

2 It checks the stylesheet for a matching template rule. It finds two, and picks the
most specific one it can find.

3 Once it’s found the best template rule for the node, it gets the template rule’s
template to add to the result tree.

4 It adds the template, which consists of a text node (“Chapter title:”) and the
result of processing the template’s xsl:apply-templates element to the
title element’s lone text node child: the string “The Whiteness of the Whale.”

Of course, XSLT can do much more than what we’ve seen so far. If you’d like more
background on key XSLT techniques before you dive into stylesheet development, the
following sections of part 2, ”XSLT user’s guide: How do I work with...,” on page 21
of this book are good candidates for “Advanced Beginner” topics:

• chapter 2, “XPath,” on page 23

• chapter 3, “Elements and attributes,” on page 47

• section 3.6, “Copying elements to the result tree,” page 57

• section 5.1, “Control statements,” page 110

• section 6.1, “HTML and XSLT,” page 187

• section 6.5, “Non-XML output,” page 202

• section 6.6, “Numbering, automatic,” page 205

• section 6.9, “Valid XML output: including DOCTYPE declarations,” page 225

Figure 1.7 How the XSLT processor handles an element node
18 CHAPTER 1 A BRIEF TUTORIAL

If your stylesheet absolutely depends on these potentially unavailable elements, the
xsl:message element can do more than just output a message about the problem:
it can abort the processing of the source document with its terminate attribute.
(See section 5.4.1, “Runtime messages, aborting processor execution,” page 134, for
more on the use of xsl:message.)
SUMMING UP THE TUTORIAL 19

P A R T 2222
XSLT user’s guide:
How do I work with...

Part 2 explores advanced aspects of XSLT in more detail. It doesn’t attempt to be
exhaustive, because this isn’t a reference book but a users guide. As a user’s guide this
part of the book presents background and examples for different areas of XSLT so
that you can put them to work in your stylesheets as quickly as possible.

The chapters here cover the following areas:

• XPath You can do a lot with simple XPath expressions, and chapter 2 outlines
the full range of possibilities for putting together axis specifiers, node tests, and
predicates into an XPath expression of one or more location steps, you can grab
almost anything you want from anywhere on the source document tree, regard-
less of the node you’re processing.

• Elements and attributes Part 1 illustrated simple ways to manipulate elements
and attributes; chapter 3, “Elements and attributes,” on page 47, demonstrates a
broader range of techniques for inserting, deleting, moving, and reordering ele-
ments, as well as ways to count, combine, and duplicate them. This chapter also
describes how to find empty elements in the source tree and how to create them
in the result tree, as well as how to deal with sibling elements, and to select ele-
ments based on their name, content, children, and parents.

Chapter 3 also covers the adding of new attributes to the result tree, convert-
ing them to elements, getting their values and names, testing for their existence

and values within a particular element, and defining and reusing groups of
attributes in different result document element types.

• Advanced XML markup XML is more than elements and attributes. Sophisti-
cated documents can take advantage of entities (especially to incorporate images
and other non-XML data), namespaces, processing instructions, comments, and
namespaces. Chapter 4, “Advanced XML markup,” on page 84, offers ways to
find these in your source documents as well as techniques for creating and con-
trolling them in your result documents.

• Programming issues Developers coming to XSLT with a programming back-
ground want to know how to perform certain operations offered by most other
programming languages: “if” statements, case (or in XSLT, “choose”) statements,
loops, setting and using variables, passing values to functions and programs (or
in XSLT’s case, to named templates and stylesheets), special functions for string
and number manipulation, the adding of new functions to use in stylesheets,
and the use of other developers’ extension functions and elements. Chapter 5,
“Programming issues,” on page 110, covers these topics as well as techniques
that make it easier to create and manage larger, more complex stylesheets. In
addition to explaining how to combine stylesheets, this chapter covers the use of
named templates, which let you apply templates explicitly instead of waiting for
the XSLT processor to do so for you. It also reviews several debugging techniques
and provides a guide to using the W3C’s official XSLT specification.

• Specialized input and output XSLT can be used to read all kinds of XML input
and to create all kinds of XML and non-XML output, but certain formats are
particularly popular and present their own set of advantages and disadvantages.
Chapter 6, “Specialized input & output,” on page 187, introduces techniques
for dealing with HTML as both input and output, using Web browsers, strip-
ping XML markup for plain text output, creating valid XML documents, and
creating formatting object files that conform to the XSL specification. It also
covers sorting and automatic numbering, handling of white space, creating IDs
and links, and splitting of output into multiple files.
22 XSLT USER’S GUIDE: HOW DO I WORK WITH.. .

C H A P T E R 2

XPath

2.1 Location paths, axes, node tests, and predicates 24
2.2 Axes 24
2.3 Node tests 41
2.4 Predicates 43
XPath is a specialized language for addressing parts of an XML document. XPath
started off as part of the XSLT spec, but when the XSL Working Group realized how
useful it could be to other W3C specifications—for example, an XLink link can use
an XPath expression as part of an XPointer expression to identify one resource in a
link—they split XPath out into its own specification.

Like the core of the SQL language used to manipulate relational databases, XPath
is important because it gives you a flexible way to identify the information you want
to pull out from a larger collection. When you create a custom version of an XML doc-
ument collection, the global replacements and deletions that you might perform with
a word processor are useful, but XPath’s ability to point at any branch of a document
tree makes it possible for XSLT to move beyond deletions and global replacements and
really create new documents out of old ones.

������� You may see values that look like XPath expressions in match patterns—
that is, as the value of a match attribute that identifies which nodes an
xsl:template element’s template rule should process. The syntax used
for match patterns defines a language that is actually a subset of the XPath
language; they’re like XPath expressions that only allow the use of the
child and attribute axes.
23

2.1 LOCATION PATHS, AXES, NODE TESTS, AND PREDICATES
The syntax of XPath expressions can be confusing because the fully spelled-out versions
have a lot of rarely used syntax. This syntax is rarely used, not because stylesheets
don’t take advantage of it, but because the most useful forms have compact abbrevia-
tions to use instead. You’ve probably seen the “at” sign (@), the slash (/), and the two
periods (..) used in XSLT stylesheets. Once you know what these symbols are abbre-
viating, you’ll more easily see how these pieces fit together, and you can then create
your own powerful XPath expressions.

An XPath expression consists of a location path, which is a series of one or more
location steps separated by slashes. The following template rule uses an XPath expres-
sion with a two-step match pattern to say “when any year node is found with a wine
parent, output its contents surrounded by vintage tags”:

<!-- xq41.xsl -->

<xsl:template match="wine/year">
 <vintage><xsl:apply-templates/></vintage>

</xsl:template>

Each location step can have up to three parts:
1 An axis specifier
2 A node test
3 A predicate

Only the node test is required in each step, which is why each
of the two location path steps in the example above (wine
and year) are just simple node names. When an axis is spec-
ified, two colons separate it from the node test, and a predi-
cate is enclosed by square braces after the node test.

���	 When discussing the mechanics of XPath, the term “context node” comes
up a lot. In general, this refers to the source tree node with which the XSLT
processor is currently dealing as it traverses that tree. (Inside of an
xsl:for-each loop, the context node is the one currently being pro-
cessed by the loop.)

2.2 AXES
A location step’s axis describes the selected nodes’ relationship to the context node in
terms of their location on the tree. For example, in the location step, the child axis
part tells an XSLT processor to look at the child nodes of the context node, and the
wine node test part tells it the name of the child nodes in which it’s interested.
Besides child, other available “tree relationships” are descendant, parent,
ancestor, following-sibling, preceding-sibling, following,
preceding, attribute, namespace, self, descendant-or-self, and
ancestor-or-self.

Figure 2.1 The parts of

an XPath location step
24 CHAPTER 2 XPATH

���	 Despite the singular form of most axis specifier names, such as ancestor
and preceding-sibling, only self and parent always refer to a sin-
gle node. The others might be more aptly named “children,” “ancestors,”
“preceding-siblings,” and so forth, so that’s how you should think of them:
as ways of accessing those particular sets of nodes. As we’ll see later, the
node test and predicate parts of a location step let you select a subset of the
group of nodes to which a particular axis specifier points.

2.2.1 The child, parent, and attribute axes

Figure 2.2 shows the parent, attribute, and child nodes of the excerpt
element in this sample document:
<!-- xq638.xml -->

<poem>
 <excerpt source="book 1">

 <verse>He lights, if it were Land

 that ever burned</verse>

 <verse>With solid, as the Lake

 with liquid fire</verse>

 </excerpt>

</poem>

The next example shows how to access the parent, child, and attribute
nodes. Let’s say that when processing the prices element, you want to look up the
grape attribute value of the prices element’s parent element.
<wine grape="Cabernet Sauvignon">
 <winery>Los Vascos</winery>

 <year>1998</year>
 <prices>

 <list>13.99</list>
 <discounted>11.99</discounted>

 <case>143.50</case>

 </prices>

</wine>

Figure 2.2

This poem’s excerpt ele-

ment has one node in its

parent axis, one in its at-

tribute axis, and two in its

child axis.
AXES 25

The following template tells the XSLT processor, “As you traverse the source tree,
when you find a prices element node, use xsl:value-of to add a certain value
to the result tree. To get that value, first go to the parent node named wine and then
go to its attribute node named grape.”
<!-- xq45.xsl: converts xq44.xml into xq46.xml -->

<xsl:template match="prices">
 parent element's grape:

 <xsl:value-of select="parent::wine/attribute::grape"/>
</xsl:template>

Each of the two steps in the select attribute’s location path have both an axis spec-
ifier (parent and attribute) and a node test (wine and grape).

This template rule creates the following result from the wine XML document
above:

 Los Vascos
 1998

 parent element's grape:
 Cabernet Sauvignon

The parent and attribute axes look pretty handy. Why do you see them so
rarely when you look at XSLT stylesheets? Because they’re so handy that XSLT offers
abbreviations for them. The “at” sign (@) abbreviates attribute::, and two peri-
ods (..) abbreviate parent::node(). (The node() node test points to the cur-
rent node.) Knowing this, you can write the preceding template rule like this with the
same effect:

<xsl:template match="prices">
 parent element's grape:

 <xsl:value-of select="../@grape"/>
</xsl:template>

The most abbreviated abbreviation is the one for the child axis: if no axis at all is spec-
ified in an XPath location step, an XSLT processor assumes that child is the axis.
For example, take a look at the following template, which (among other things) plugs
in the value of the wine element’s year child as the value of the vintage attribute
in the result tree version. (The curly braces tell the XSLT processor to evaluate the
string “child::year” as an expression—that is, to figure out what it’s supposed to repre-
sent instead of putting that actual string as the value of the vintage elements.)

<!-- xq48.xsl -->

<xsl:template match="wine">
 <wine vintage="{child::year}">

 <xsl:apply-templates select="product"/>
 <category><xsl:value-of select="@grape"/></category>

 <xsl:apply-templates select="price"/>
 </wine>

</xsl:template>
26 CHAPTER 2 XPATH

Written like this (with the child axis specification removed) it will have the same
effect and be more compact:
<!-- xq49.xsl -->

<xsl:template match="wine">
 <wine vintage="{year}">

 <xsl:apply-templates select="product"/>

 <category><xsl:value-of select="@grape"/></category>

 <xsl:apply-templates select="price"/>
 </wine>

</xsl:template>

2.2.2 ancestor and ancestor-or-self

Figure 2.3 shows the ancestor and ancestor-or-self nodes of the first
verse element in the poem example from the following document:

<poem>

 <excerpt source="book 1">
 <verse>He lights, if it were Land

 that ever burned</verse>

 <verse>With solid, as the Lake

 with liquid fire</verse>
 </excerpt>

</poem>

The ancestor axis is great when you want to apply special treatment to elements
that exist somewhere inside another element but you’re not sure how many levels
down. In the next example, let’s say you want to format your para elements differ-
ently when they’re in an appendix element. These para elements may be children
of an appendix element, or children of section elements inside an appendix
element, or children of subsect or warning elements inside a section element.

Figure 2.3

Each of this poem’s

verse elements has

three nodes in its an-

cestor axis and four

nodes in its ancestor-

or-self axis.
AXES 27

The “para” template rule in the following example uses the ancestor axis to add
one set of markup to the result tree if the para source node element has an appen-
dix element as an ancestor and another if it has a chapter element as an ancestor.

<!-- xq51.xsl -->

<xsl:template match="para">

 <xsl:if test="ancestor::appendix">
 <p><xsl:apply-templates/></p>

 </xsl:if>

 <xsl:if test="ancestor::chapter">
 <p><xsl:apply-templates/></p>

 </xsl:if>

</xsl:template>

(See section 5.4, “Debugging,” on page 133 for another interesting use of the
ancestor attribute.)

Why would you want to use the ancestor-or-self axis? Suppose you want
to check the value of an attribute that may be either in the current element or one of
its ancestors. For example, the XML specification describes the xml:lang attribute,
which indicates the spoken language of an element and all of its descendants that don’t
have their own xml:lang attribute. To check whether an element has a particular lan-
guage specified for it, you could check that element, then check its parent, then check
its parent’s parent, and so on, or you could use the ancestor-or-self axis like this:

<!-- xq52.xsl: converts xq53.xml into xq54.xml -->

<xsl:template match="warning">

 <xsl:if test="ancestor-or-self::*[@xml:lang][1]/@xml:lang='en'">
 <p>Warning! <xsl:apply-templates/></p>

 </xsl:if>

 <xsl:if test="ancestor-or-self::*[@xml:lang][1]/@xml:lang='de'">

 <p>Achtung! <xsl:apply-templates/></p>
 </xsl:if>

</xsl:template>

Each of the two xsl:if elements has a two-step location path in its test attribute
value. If the first step said ancestor-or-self::warning, this would tell the
XSLT processor to check the current node and its ancestors and select any of those
nodes named warning. Instead, it uses the asterisk to select the ancestor-or-
self nodes with any name and a double predicate to select, of those nodes in that
axis that have an xml:lang attribute, the first one. The location path’s second step
checks whether the node selected by the first step has a value of “en” or “de” for its
attribute value. When the current node or its closest ancestor with an xml:lang
attribute has a value of “en” for that attribute, the first xsl:if instruction adds the
28 CHAPTER 2 XPATH

English string “Warning!” to the result tree. If that xml:lang attribute has a value of
“de”, the second xsl:if statement adds the German “Achtung!”

With the following document in the source tree,

<chapter>

 <section xml:lang="de">
 <warning>Make a backup first.</warning>

 </section>
</chapter>

the template above adds the string “Achtung!” at the start of the result tree’s version of
the warning element whether the xml:lang attribute was part of the warning,
section, or chapter start-tags:

 <p>Achtung! Make a backup first.</p>

2.2.3 preceding-sibling and following-sibling

The term “sibling” refers to another node with the same parent as the context node.
The preceding-sibling axis refers to all the siblings before the context node, and
following-sibling refers to all the siblings after it. Figure 2.4 shows the pre-
ceding-sibling and following-sibling nodes of this poem document’s
third excerpt child element:

<!-- xq640.xml -->

<poem>
 <excerpt>

 <verse>Then with expanded wings he steers his flight</verse>
 <verse>Aloft, incumbent on the dusky Air</verse>

 </excerpt>
 <excerpt>

 <verse>I therefore, I alone first undertook</verse>
 <verse>To wing the desolate Abyss, and spy</verse>

 </excerpt>
 <excerpt>

 <verse>This new created World, whereof in Hell</verse>

 <verse>Fame is not silent, here in hope to find</verse>

 </excerpt>

 <excerpt>

 <verse>Better abode, and my afflicted Powers</verse>
 <verse>To settle here on Earth or in mid-air</verse>

 </excerpt>
 <excerpt>

 <verse>Spirit of happy sort: his gestures fierce</verse>
 <verse>He marked and mad demeanor, then alone</verse>

 </excerpt>
</poem>

The template in this next example copies chapter elements from the source tree to the
result tree and uses these two axis specifiers to add messages about the preceding and
following chapters at the beginning of each chapter.
AXES 29

<!-- xq56.xsl: converts xq57.xml into xq58.xml -->

<xsl:template match="chapter">
 <chapter>

 Previous chapter:
 (<xsl:value-of select="preceding-sibling::chapter[1]/title"/>)

 Next chapter:

 (<xsl:value-of select="following-sibling::chapter/title"/>)

 <xsl:text>
 </xsl:text>

 <xsl:apply-templates/>
 </chapter>

</xsl:template>

Understanding how this is done will be easier if we first see the effect this has. This
template turns the following input

<story>

 <chapter><title>Chapter 1</title>
 <para>A Dungeon horrible, on all sides round</para>

 </chapter>

 <chapter><title>Chapter 2</title>

 <para>More unexpert, I boast not: them let those</para>
 <para>Contrive who need, or when they need, not now.</para>

 <sect><title>Chapter 2, Section 1</title>
 <para>For while they sit contriving, shall the rest,</para>

 <para>Millions that stand in Arms, and longing wait</para>

 </sect>
 </chapter>

 <chapter><title>Chapter 3</title>
 <para>So thick a drop serene hath quenched their Orbs</para>

 </chapter>

Figure 2.4 This poem’s third excerpt element has two nodes in its preceding-sibling

axis and two in its following-sibling axis.
30 CHAPTER 2 XPATH

</story>

into this:

 <chapter>

 Previous chapter:
 ()

 Next chapter:

 (Chapter 2)

 Chapter 1
 A Dungeon horrible, on all sides round

 </chapter>

 <chapter>

 Previous chapter:
 (Chapter 1)

 Next chapter:

 (Chapter 3)

 Chapter 2
 More unexpert, I boast not: them let those

 Contrive who need, or when they need, not now.

 Chapter 2, Section 1
 For while they sit contriving, shall the rest,

 Millions that stand in Arms, and longing wait

 </chapter>

 <chapter>
 Previous chapter:

 (Chapter 2)
 Next chapter:

 ()

 Chapter 3
 So thick a drop serene hath quenched their Orbs

 </chapter>

Each of the two xsl:value-of elements in the template rule has a two-step XPath
expression as its select attribute. For the second of these elements, the two steps
are following-sibling::chapter and title, telling the XSLT processor
“go to the sibling node named chapter that is after the context node (which is also
named chapter, as we see from the xsl:template element’s match attribute)
and grab the value of its title child element.” Although following-sibling
can refer to multiple nodes, the xsl:value-of element only adds a text version of
the first one to the result tree. For the first chapter in the source document, the sec-
ond chapter is that first node; for the second chapter, the third chapter is; and for the
third chapter, no such node exists, so nothing appears in the parentheses after the
final “Next chapter” in the result document.
AXES 31

The first xsl:value-of element in the example template resembles the second
with this exception: we don’t want xsl:value-of to get a text version of the first
node in the set of nodes to which that preceding-sibling::chapter points.
Chapter 3 has two preceding siblings, but the first of those is not the preceding chap-
ter. To tell the XSLT processor to grab the preceding sibling just before the context
node, the location step includes the predicate [1], telling the XSLT processor “get the
first one as you count along these nodes.” This may seem confusing, because we’re
adding the number “1” to show that we don’t want the first node, but we don’t want
the first one in document order; we want the first one counting backwards—the one
preceding the context node. The XSLT processor counts backwards through a node set
when you add a number predicate to an XPath expression using the preceding-
sibling, preceding, ancestor, or ancestor-or-self axes. Just as your
parent is your first ancestor and your grandparent is your second ancestor, your first
preceding sibling is the one just before you, and your second preceding sibling is the
one before that. The XSLT processor counts forward, in document order, for any
other axis.

In the example, the two steps of the preceding-sibling::chapter[1]/
title XPath expression say “go to the first preceding sibling named chapter, then
get its title element’s contents.” The first chapter has no preceding chapter sib-
ling, so nothing shows up in the parentheses after the first “Previous chapter” text in
the result.

2.2.4 preceding and following

The preceding and following axis specifiers let you address nodes that aren’t
necessarily siblings. The preceding axis contains all the nodes that end before the
context node begins, and the following axis contains all the nodes that begin after
the context node ends. Figure 2.5 shows how the poem element’s third excerpt ele-
ment in the following document has six nodes in its preceding axis and six in its
following axis:

<!-- xq641.xml -->
<poem>

 <excerpt>
 <verse>Then with expanded wings he steers his flight</verse>

 <verse>Aloft, incumbent on the dusky Air</verse>
 </excerpt>

 <excerpt>
 <verse>I therefore, I alone first undertook</verse>

 <verse>To wing the desolate Abyss, and spy</verse>
 </excerpt>

 <emphasis><excerpt>
 <verse>This new created World, whereof in Hell</verse>

 <verse>Fame is not silent, here in hope to find</verse>
 </excerpt></emphasis>

 <excerpt>
 <verse>Better abode, and my afflicted Powers</verse>
32 CHAPTER 2 XPATH

 <verse>To settle here on Earth or in mid-air</verse>

 </excerpt>
 <excerpt>

 <verse>Spirit of happy sort: his gestures fierce</verse>
 <verse>He marked and mad demeanor, then alone</verse>

 </excerpt>
</poem>

In the next example, we’ll use these axes in a template rule for the sample document’s
test elements. We want this template to add messages naming the titles of the pre-
ceding and following chapters.

In the following document, what if we want the “Previous chapter” and “Next
chapter” messages that we saw in section 2.2.3, “preceding-sibling and following-sib-
ling,” page 29, to show up where the test elements are?
<story>

 <chapter><title>Chapter 1</title>

 <para>A Dungeon horrible, on all sides round</para>
 </chapter>

 <chapter><title>Chapter 2</title>
 <para>More unexpert, I boast not: them let those</para>

 <test/>
 <para>Contrive who need, or when they need, not now.</para>

 <sect><title>Chapter 2, Section 1</title>
 <para>For while they sit contriving, shall the rest,</para>

 <test/>
 <para>Millions that stand in Arms, and longing wait</para>

 </sect>
 </chapter>

 <chapter><title>Chapter 3</title>
 <para>So thick a drop serene hath quenched their Orbs</para>

 </chapter>

</story>

The first test element needs to point at the nodes preceding and following its grand-
parent, because it’s in a para element inside a chapter element. The second test
element must point at the nodes preceding and following its great-grandparent,
because it’s in a para element in a sect element in a chapter element.

Despite the two test element’s different levels of depth in the source tree, the
preceding and following axes let a stylesheet use the same template rule:
AXES 33

<!-- xq61.xsl: converts xq60.xml into xq62.xml -->

 <xsl:template match="test">

 Previous chapter:
 (<xsl:value-of select="preceding::chapter[1]/title"/>)

 Next chapter:
 (<xsl:value-of select="following::chapter/title"/>)

 <xsl:apply-templates/>

 </xsl:template>

The first xsl:value-of element’s XPath expression tells the XSLT processor “go
to the first node named “chapter” that finished before the context node (for this tem-
plate, the test element) started, and get its title element’s contents.” As with the
preceding-sibling example earlier, this XPath expression needs the [1] predicate
to show that of all the chapter elements preceding the context node, the XSLT pro-
cessor should grab the first one. Because the counting is done from the end of the node
list when using the preceding axis, that means the first one counting backwards.

The second xsl:value-of element’s XPath expression tells the XSLT proces-
sor to get the contents of the title element in the first chapter element that begins
after the context node ends. When a stylesheet with this template is run with the sam-
ple document above, the output for both test elements in chapter 2 is the same:
<story>

 <chapter><title>Chapter 1</title>

 <para>A Dungeon horrible, on all sides round</para>
 </chapter>

 <chapter><title>Chapter 2</title>
 <para>More unexpert, I boast not: them let those</para>

 Previous chapter:

Figure 2.5 This poem’s third excerpt element has six nodes in its preceding axis and six

in its following axis.
34 CHAPTER 2 XPATH

 (Chapter 1)

 Next chapter:

 (Chapter 3)

 <para>Contrive who need, or when they need, not now.</para>
 <sect><title>Chapter 2, Section 1</title>

 <para>For while they sit contriving, shall the rest,</para>

 Previous chapter:

 (Chapter 1)
 Next chapter:

 (Chapter 3)

 <para>Millions that stand in Arms, and longing wait</para>

 </sect>
 </chapter>

 <chapter><title>Chapter 3</title>
 <para>So thick a drop serene hath quenched their Orbs</para>

 </chapter>

</story>

2.2.5 descendant and descendant-or-self

The descendant axis refers to the context node’s children, the children’s children,
and any other descendants of the context node at any level. Figure 2.6 shows how the
poem element in the following document has four descendant nodes and five
descendant-or-self nodes in the following document:

<!-- xq642.xml -->
<poem>

 <excerpt source="book 1">
 <verse>He lights, if it were Land

 that ever burned</verse>
 <verse>With solid, as the Lake

 with liquid fire</verse>
 </excerpt>

</poem>

In this next example, let’s say that when we transform the following document we want
to list all of a chapter’s pictures at the beginning of the result tree’s chapter element.
Of its three figure elements, the first is a child of the chapter element; the sec-
ond is a grandchild (being in the sect1 child); and the third is a great-grandchild:

<chapter>

 <para>Then with expanded wings he steers his flight</para>
 <figure><title>"Incumbent on the Dusky Air"</title>

 <graphic fileref="pic1.jpg"/></figure>

 <para>Aloft, incumbent on the dusky Air</para>
 <sect1>

 <para>That felt unusual weight, till on dry Land</para>
 <figure><title>"He Lights"</title>

 <graphic fileref="pic2.jpg"/></figure>
AXES 35

 <para>He lights, if it were Land that ever burned</para>

 <sect2>
 <para>With solid, as the Lake with liquid fire</para>

 <figure><title>"The Lake with Liquid Fire"</title>
 <graphic fileref="pic3.jpg"/></figure>

 </sect2>
 </sect1>

</chapter>

After the chapter start-tag in the result tree document, we want to see the string “Pic-
tures:” as a header. After that, we want the titles of all the chapter’s figure elements,
like this:

<chapter>

Pictures:
"Incumbent on the Dusky Air"

"He Lights"
"The Lake with Liquid Fire"

 <para>Then with expanded wings he steers his flight</para>
 <figure><title>"Incumbent on the Dusky Air"</title>

 <graphic fileref="pic1.jpg"/></figure>
 <para>Aloft, incumbent on the dusky Air</para>

 <sect1>
 <para>That felt unusual weight, till on dry Land</para>

 <figure><title>"He Lights"</title>

 <graphic fileref="pic2.jpg"/></figure>
 <para>He lights, if it were Land that ever burned</para>

 <sect2>
 <para>With solid, as the Lake with liquid fire</para>

 <figure><title>"The Lake with Liquid Fire"</title>

Figure 2.6 This poem element has four descendant nodes and five

descentant-or-self nodes.
36 CHAPTER 2 XPATH

 <graphic fileref="pic3.jpg"/></figure>

 </sect2>
 </sect1>

</chapter>

The following template rule uses the descendant axis specifier to find these figure
titles even though they are at three different levels in the source tree document. The
template first adds the string “Pictures:” to the result tree after the chapter start-tag.

In our earlier examples of using axis specifiers, we saw that xsl:value-of returns
a text node of only the first node to which the axis points. In this case, we want all the
nodes in that axis, so the template uses an xsl:for-each instruction to iterate across
the node set. The xsl:for-each element’s select attribute names the node set to
iterate over, and an xsl:value-of instruction adds the contents of each figure ele-
ment’s title to the result tree. (See “Iteration across nodes with xsl:for-each,” on page
118 for more on this instruction.) The xsl:text element (with only a carriage return
as its contents) adds this character after each title that the xsl:value-of element
instruction adds to the result tree:

<!-- xq66.xsl: converts xq64.xml into xq65.xml -->

<xsl:template match="chapter">
 <chapter>

 Pictures:
 <xsl:for-each select="descendant::figure">

 <xsl:value-of select="title"/>

 <xsl:text>

 </xsl:text>

 </xsl:for-each>

 <xsl:apply-templates/>
 </chapter>

</xsl:template>

As you may guess from the name descendant-or-self, this axis checks a con-
text node’s descendants and the context node itself. For example, imagine that you
want to list all the people who worked on the following chapter by listing the values
of any author attributes in the entire work:

<chapter author="jm">

 <para>Then with expanded wings he steers his flight</para>
 <para author="ar">Aloft, incumbent on the dusky Air</para>

 <sect1 author="bd">
 <para>That felt unusual weight, till on dry Land</para>

 <para>He lights, if it were Land that ever burned</para>
 <sect2 author="jm">

 <para>With solid, as the Lake with liquid fire</para>

 </sect2>
 </sect1>

</chapter>
AXES 37

The chapter template rule that makes this possible uses an asterisk node test with a
descendant-or-self axis specifier in an xsl:for-each instruction to go
through all the elements, regardless of their names, that qualify as descendant-
or-self nodes.

<!-- xq68.xsl: converts xq67.xml into xq69.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:template match="chapter">

 <chapter>
Authors

<xsl:for-each select="descendant-or-self::*/@author">

<xsl:value-of select="."/><xsl:text>

</xsl:text>

 </xsl:for-each>

 <xsl:apply-templates/>
 </chapter>

</xsl:template>

</xsl:stylesheet>

The descendant-or-self part is the first step of the location path in the
xsl:for-each element’s select attribute. The second step (@author) checks for
an author attribute of each of these descendant-or-self nodes. (Remember,
@author is an abbreviation of attribute::author, which would have the same
effect.) Inside the xsl:for-each instruction, the xsl:value-of element grabs a
string version of each selected node and adds it to the result tree; the xsl:text ele-
ment after that adds a carriage return.

The output shows every author value in document order:

<?xml version="1.0" encoding="utf-8"?>

<chapter>
Authors

jm
ar

bd
jm

 Then with expanded wings he steers his flight
 Aloft, incumbent on the dusky Air

 That felt unusual weight, till on dry Land
 He lights, if it were Land that ever burned

 With solid, as the Lake with liquid fire

</chapter>

(For information on removing duplicates, see section 3.9, “Duplicate elements, delet-
ing,” on page 64.) An abbreviation for this axis exists as well, or rather, an abbrevia-
tion exists for a common XPath fragment that uses this axis: “// ” means the same as
38 CHAPTER 2 XPATH

“/descendant-or-self::node()/.” Note the slashes beginning and ending
the fragment represented by this abbreviation; it’s almost as though you can just
leave out the “descendant-or-self::node()” part when you want to write
“/descendant-or-self::node()/” to leave you with “//”.

It’s a nice shortcut to refer to any descendant of a given element with a particular
name. For example, while chapter/title means “any title child of a chapter element,”
chapter//title means “any title descendant of a chapter element.” An
XPath expression that begins with these two slashes refers to any descendant of the doc-
ument’s root described by the part after the “//”. This is an easy way to refer to any
node in a document that meets a certain condition; for example, //title refers to
any title element anywhere in the document.

This “//” abbreviation doesn’t have to be used with elements. The XPath expres-
sion chapter//@author refers to any author attribute in a chapter or one of
its descendants, and //comment() refers to all the comments in a document.

The // abbreviation has one interesting advantage over the XPath fragment that
it represents: In addition to using it in XPath expressions, you can use it in match pat-
terns (that is, in the value of an xsl:template instruction’s match attribute).
Match pattern syntax is a subset of XPath expression syntax; there are various features
of XPath syntax that aren’t allowed in a match pattern. The descendant-or-self
axis is one, but you are free to use the // abbreviation in both XPath expressions and
match patterns.

2.2.6 self

The self node refers to the context node itself. We’ve already used an abbreviation of
it several times in the last few examples: the single period (.) is an abbreviation of
self::node(), which says “give me the context node, whatever its type is.” (The
node() node test is true for any node. The XPath expression needs it there because
the node test is a required part of an XPath expression or match pattern.) Where you
see <xsl:value-of select="."/> in the last few examples, the stylesheets
would work exactly the same if the select attribute had the value self::node().
Figure 2.7 shows how the excerpt element in the following document has only one
node at its self axis:

<!-- xq643.xml -->

<poem>
 <excerpt source="book 1">

 <verse>He lights, if it were Land

 that ever burned</verse>

 <verse>With solid, as the Lake

 with liquid fire</verse>

 </excerpt>

</poem>
AXES 39

2.2.7 namespace

The last axis is namespace. This axis consists of the default xml namespace and any
additional ones that are in scope for the context node.

Figure 2.8 shows how the excerpt element in the following document has
three namespace nodes: the default “xml” one, and “foo” one declared by its parent
element, and the “bar” one declared in its own start-tag:

<!-- xq644.xml -->
<poem xmlns:foo="http://www.snee.com/schemas/foo">

 <excerpt xmlns:bar="http://www.snee.com/schemas/bar">
 <verse>He lights, if it were Land

 that ever burned</verse>
 <verse>With solid, as the Lake

 with liquid fire</verse>
 </excerpt>

</poem>

Figure 2.7

This poem’s excerpt el-

ement has one self

node: the excerpt ele-

ment node.

Figure 2.8

This poem’s excerpt

element is in the

scope of three

namespace prefixes.
40 CHAPTER 2 XPATH

In the next example, the template rule lists the prefixes for a test element’s
namespace nodes:

<!-- xq72.xsl: converts xq73.xml into xq74.xml -->

<xsl:template match="test">
 <xsl:for-each select="namespace::*">

 <xsl:value-of select="name()"/><xsl:text> </xsl:text>

 </xsl:for-each>

</xsl:template>

For a document like this with three namespaces declared,

<test xmlns:snee="http://www.snee.com/dtds/test"

 xmlns:glikk="http://www.glikk.com/dtds/test"
 xmlns:flunn="http://www.flunn.com/dtds/test">

this is a test.
</test>

the stylesheet lists the prefixes for the default xml namespace as well as the three
declared namespaces with a space after each:

xml flunn glikk snee

�������	 Despite the requirements of the XPath specification, not all XSLT proces-
sors assume the existence of a default “xml” namespace node, so you may
not see it listed if you run the above example.

For related information, see section 4.3, “Namespaces,” on page 92.

2.3 NODE TESTS
In an XPath expression’s location step, a node test is a way of saying “of the nodes that
the axis specifier refers to, I’m interested in the one (or ones) with this name.” An
asterisk (*) node test means “I’m interested in all of them”; a node test of price
means “I want the ones named ‘price’.”

How does an XSLT processor know whether a node test of price refers to a
price element, a price attribute, or a price namespace? Each axis has a principal
node type, or a specific node type to which it refers. They’re easy to remember: the
attribute axis refers to attributes; the namespace axis refers to namespaces; the
rest all refer to elements. The XPath expression ancestor::price selects all the
price elements that are ancestors of the context node, and the XPath expression
attribute::price refers to a price attribute of the context node. (In the latter
case, the abbreviation @price is more likely to be used.)

A node test is the only part of an XPath location step that must be included,
because predicates are optional, and when no axis specifier is included, the XSLT pro-
cessor assumes a default axis of child. Knowing this, you can see why the value of
the select attribute in the following template rule’s xsl:value-of element is a
complete XPath expression: it’s a location path with only one step that omits the axis
NODE TESTS 41

specifier (so we can assume the default of “child::”) and doesn’t need a predicate. This
node test of price is a complete XPath expression, telling the XSLT processor to add
the value of the wine element’s price child to the result tree when the XSLT pro-
cessor finds a wine element in the source tree.

<!-- xq76.xsl -->

<xsl:template match="wine">

 <xsl:value-of select="price"/>

</xsl:template>

The XPath expression in the select attribute of the next template rule’s
xsl:value-of element has a two-step location path. Both steps are merely node
tests. Because both steps take the default axis value of child, they tell the XSLT pro-
cessor, “go to the context node’s price child, then go to the price element’s retail
child, and add a text node with the retail child’s contents to the result tree.”

<!-- xq77.xsl -->

<xsl:template match="wine">
 <xsl:value-of select="prices/retail"/>

</xsl:template>

The node() node test is true for any node regardless of its type. This is broader than
a node test of *, which refers to all the sibling nodes of the axis specifier’s principal
node type. For example, let’s look at the child nodes of the book element in the fol-
lowing document:

<book author="jm">

 <chapter>Daughter of God and Man, accomplished Eve</chapter>
 <!-- here is a comment -->

 <?xml-stylesheet href="ss.css" type="text/css" ?>

</book>

The book element has three children: a chapter element, a comment, and a pro-
cessing instruction. When processing this document, the XPath expression in the
select attribute of the following template’s xsl:for-each element only selects
the book element node’s chapter child element, because the XPath expression’s
axis is the default child axis. The child axis has a principal node type of element, so
the XPath expression only looks for element children of the book element.

<!-- xq79.xsl -->

<xsl:template match="book">

 <xsl:for-each select="*">
 <xsl:value-of select="."/>

 </xsl:for-each>

</xsl:template>

The following template (whose only difference from the previous one is its use of the
node() node test in the xsl:for-each element’s select attribute instead of *)
42 CHAPTER 2 XPATH

selects all the children of the book element node: the chapter element, the com-
ment, and the processing instruction. Again, the lack of an axis specifier in this XPath
expression means that child is the relevant axis, and the child axis’s principal
node type is still “element”, but the node() node test doesn’t care; it wants all the
context node’s children regardless of their type.

<!-- xq80.xsl -->

<xsl:template match="book">
 <xsl:for-each select="node()">

 <xsl:value-of select="."/>
 </xsl:for-each>

</xsl:template>

2.4 PREDICATES
The third part of a location step is the optional part known as the predicate. This is
an expression in square brackets that lets you be more specific about which node you
really want from the set selected by the axis specifier and node test. Any nodes for
which the predicate expression is true are selected, and any others are left out.

For example, the one-step XPath expression in the select attribute of the fol-
lowing template rule’s xsl:for-each element does not use a predicate. It tells the
processor that when it finds a winelist element node in the source tree, it should
go through all of its wine children and add a text node with the value of each one’s
winery subelement to the result tree:

<!-- xq82.xsl -->

<xsl:template match="winelist">
 <xsl:for-each select="child::wine">

 <xsl:value-of select="winery"/>

 </xsl:for-each>

</xsl:template>

The next template is the same, except that the XPath expression in the xsl:for-
each element’s select attribute has a predicate. The Boolean expression
@grape='Cabernet' tells the XSLT processor, “of the nodes that the axis specifier
and node test child::wine point to, I only want the ones that have a grape
attribute value of ‘Cabernet’ specified.”

<!-- xq83.xsl -->

<xsl:template match="winelist">
 <xsl:for-each select="child::wine[@grape='Cabernet']">

 <xsl:value-of select="winery"/>
 </xsl:for-each>

</xsl:template>

The expression @grape='Cabernet' is obviously Boolean: for a given node it’s
either true or false. Other handy predicates may not look like Boolean expressions,
but the XSLT processor will treat them as true for each node that they apply to, and
PREDICATES 43

false for the others. For example, the predicate in the XPath expression
child::wine[@grape] selects any wine child that has a grape attribute speci-
fied at all. The expression child::wine[year] returns a true value only for
wine elements that have a year subelement.

When a predicate has a number, it returns a true value for a node that has that
number’s position in the node set. For example, child::wine[4] is true for the
fourth wine child.

XSLT offers many built-in functions useful in predicates. (Technically, some are
actually XPath functions. The rest are XSLT’s additions to the available repertoire.)
In fact, the use of a number such as 4 as a predicate expression is really an abbreviation
of the predicate expression position() = 4, which definitely has a more Boolean
look to it—either a node’s position in the node list equals 4 or it doesn’t. Other func-
tions that you can use in predicates include

• last() returns the number of nodes in the node list, making it easy to get a
list’s last node when you don’t know how long the node list is. For example, if
you have five wine nodes, child:wine[last()] gives you the fifth one.

• text() is true for any node that has text content. For example, if some year
elements have text content and others are empty, child::year[text()] is
only true for the ones with text content. (Technically, text() is a node test and
not a function.)

• not() takes a Boolean expression as an argument and returns the opposite value
of that expression. For example, child::year[not(text())] selects all the
year elements that have no text. You can do this with an attribute name to get
all the elements that don’t have that attribute value set; for example,
child::wine[not(@grape)] gives you all the wine nodes that don’t have a
grape attribute.

Why would you select the nodes that don’t have text or a particular attribute set?
Maybe you need to know which ones are missing text or a value for a certain
attribute. For example, let’s say you’re going to publish your wine price list but first
need to check which wines have no discounted value specified yet. Of your 200
entries, here are three:

<winelist>

 <wine grape="Chardonnay">
 <winery>Benziger</winery>

 <product>Carneros</product>
 <year>1997</year>

 <prices>

 <list>10.99</list>
 <discounted>9.50</discounted>

 </prices>
 </wine>

 <wine grape="Cabernet">
44 CHAPTER 2 XPATH

 <winery>Duckpond</winery>

 <product>Merit Selection</product>
 <year>1996</year>

 <prices>
 <list>13.99</list>

 <discounted></discounted>
 </prices>

 </wine>

 <wine grape="Chardonnay">

 <winery>Lindeman's</winery>
 <product>Bin 65</product>

 <year>1998</year>
 <prices>

 <list>6.99</list>
 <discounted>5.99</discounted>

 </prices>
 </wine>

</winelist>

The template uses an xsl:for-each element to look at the discounted value of
each of the winelist element’s wine children.

<!-- xq85.xsl: converts xq84.xml into xq86.txt -->

<xsl:template match="winelist">

Wines needing their "discount" value set:
 <xsl:for-each select="wine/prices/discounted[not(text())]">

 <xsl:value-of select="../../year"/><xsl:text> </xsl:text>
 <xsl:value-of select="../../winery"/><xsl:text> </xsl:text>

 <xsl:value-of select="../../product"/>
 </xsl:for-each>

</xsl:template>

For each wine element whose prices child has a discounted child containing
no text, the XSLT processor adds the year, winery, and product values, sepa-
rated by spaces, to the result tree. Here is the result for the preceding document:

Wines needing their "discount" value set:
 1996 Duckpond Merit Selection

The paths used in the three xsl:value-of elements’ select attributes need
further explanation. Each has two slashes, meaning that each is a three-step loca-
tion path. The first and second step of each are two periods, which is an abbrevia-
tion of the axis specifier and node test parent::node(). So, the XPath expression
../../year in the first xsl:value-of element’s select attribute tells the
XSLT processor, “follow a path to the context node’s parent, then to the parent’s
parent (the grandparent), and then to the grandparent’s year child.” (In effect, the
year “uncle” node.) How did it know where to start following this path? In most
situations, the context node is the one named in the xsl:template element’s
match attribute, but inside an xsl:for-each loop, the context node is the node
PREDICATES 45

that the loop is currently counting off as it goes through the nodes—in this case, a
discounted element. Why is the loop counting off discounted elements? Because, as
complicated as the XPath expression wine/prices/discounted[not(text())]
may look, the type of the nodes that the XPath expression is ultimately talking
about is always the type of the nodes named by the node test in the XPath expres-
sion’s last location path step. Here, the last step is discounted[not (text())],
and its node test is discounted.

�������	 While predicates may mention certain kinds of elements or other nodes,
they don’t affect the type of node being selected; they specify a condition to
apply to the nodes selected by the axis specifier and node test. For example,
“wine[year]” (or “child::wine[child::year]”, which means the same thing)
selects not year elements, but wine elements that happen to have a
year child.

Fancy XPath expressions can be intimidating, but they’re not too bad if you remem-
ber a few things:

• Look at the slashes first. These show how the expression breaks down into steps.

• The last step has some of the most important information: the type of node that
the expression is ultimately addressing, and, in the predicate, any conditions for
filtering out a subset of them.

• “@” abbreviates attribute::, “..” abbreviates parent::node(), and “//
” abbreviates “/descendant-or-self::node()/”.

The more you learn about how the parts can be assembled to create XPath expressions,
the more options you’ll have to put together your own powerful XPath expressions.
46 CHAPTER 2 XPATH

C H A P T E R 3

Elements and attributes

3.1 Adding new elements to the

result tree 47
3.2 Changing element names for the

result tree 50
3.3 Parent, grandparent, sibling, uncle,

and other relative elements: getting
their content and attributes 50

3.4 Previous, next, first, third, last
siblings 53

3.5 Converting elements to attributes for
the result tree 55

3.6 Copying elements to the
result tree 57

3.7 Counting elements and other
nodes 61

3.8 Deleting elements from the
result tree 63

3.9 Duplicate elements, deleting 64
3.10 Empty elements: creating,

checking for 67
3.11 Moving and combining elements for

the result tree 69
3.12 Selecting elements based on: element

name, content, children, parents 72
3.13 Adding new attributes 77
3.14 Converting attributes to elements 79
3.15 Getting attribute values and

names 80
3.16 Testing for attribute existence and for

specific attribute values 81
3.17 Reusing groups of attributes 82
3.1 ADDING NEW ELEMENTS TO THE RESULT TREE
An XSLT processor’s main job is to look through a stylesheet for specialized elements
from the XSLT namespace and execute the instructions specified by each of those ele-
ments on the source tree where the input document resides in memory. When the
processor finds elements from outside of the XSLT namespace (or any namespace
47

declared as an XSLT extension, which is how XSLT processors let you incorporate
their nonstandard instructions into a stylesheet) in any of a stylesheet’s templates, it
passes them along to the result tree untouched. We call these “literal result elements.”

This makes it easy to add new elements to your output documents: simply add
elements from outside of the XSLT namespace inside of the appropriate templates.

The stylesheet below demonstrates this. When the stylesheet’s first template
rule sees a poem element, it adds its contents to the result tree using xsl:apply-
templates and surrounds those contents with ode tags, effectively renaming the
element from poem to ode. After that ode start-tag, and before the xsl:apply-
template element that shows where to put the poem element’s contents, the tem-
plate rule adds two new child elements of this ode element to the result tree: an
author element and a year element. The author element has a hard-coded value
of “John Milton,” which remains the same for all author elements output by this
template rule. The year element uses the xsl:value-of element to output the
value of the poem element’s year attribute:

<!-- xq89.xsl: converts xq90.xml into xq91.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:template match="poem">

 <ode>
 <author>John Milton</author>

 <year><xsl:value-of select="@year"/></year>

 <xsl:apply-templates/>

 </ode>

 </xsl:template>

 <xsl:template match="verse">
 <verse><xsl:apply-templates/></verse>

 </xsl:template>

</xsl:stylesheet>

The result is the conversion of a document like this one

<poem year="1667" type="epic">

<verse>Nine times the Space that measures Day and Night</verse>
<verse>To mortal men, he with his horrid crew</verse>

</poem>

to this:

<?xml version="1.0" encoding="utf-8"?>

<ode><author>John Milton</author><year>1667</year>
<verse>Nine times the Space that measures Day and Night</verse>

<verse>To mortal men, he with his horrid crew</verse>

</ode>

The xsl:xsl:element element offers another way to create new elements
for your result tree. The following stylesheet does the same thing as the last
48 CHAPTER 3 ELEMENTS AND ATTRIBUTES

one, but it uses xsl:element elements instead of literal result elements.
Their name attributes name the elements being created, and the XSLT pro-
cessor adds start- and end-tags for those elements to the result tree:

<!-- xq92.xsl: converts xq90.xml into xq91.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="poem">
 <xsl:element name="ode">

 <xsl:element name="author">John Milton</xsl:element>
 <xsl:element name="year"><xsl:value-of select="@year"/>

 </xsl:element>

 <xsl:apply-templates/>

 </xsl:element>

 </xsl:template>

 <xsl:template match="verse">
 <verse><xsl:apply-templates/></verse>

 </xsl:template>

</xsl:stylesheet>

This name attribute is the key to the advantage of xsl:element elements over lit-
eral result elements. It offers greater flexibility, letting you create element names
dynamically by concatenating strings, calling functions, and retrieving element con-
tent and attribute values from elsewhere in the document. For instance, the template
in the next example resembles the first one in the stylesheets above except that,
instead of converting the source tree’s poem element into an ode element using an
ode literal result element or an xsl:element element with a hard-coded name
value, the template uses an xsl:element element to create an element that gets its
name from the poem element’s type attribute value:

<!-- xq93.xsl: converts xq90.xml into xq94.xml -->

<xsl:template match="poem">

 <xsl:element name="{@type}">
 <author>John Milton</author>

 <year><xsl:value-of select="@year"/></year>
 <xsl:apply-templates/>

 </xsl:element>
</xsl:template>

 <xsl:template match="verse">
 <verse><xsl:apply-templates/></verse>

 </xsl:template>

When applied to the earlier poem document which had a type attribute value of
“epic” in its poem element, the template creates the following epic element:

<epic><author>John Milton</author><year>1667</year>

<verse>Nine times the Space that measures Day and Night</verse>
ADDING NEW ELEMENTS TO THE RESULT TREE 49

<verse>To mortal men, he with his horrid crew</verse>

</epic>

Using this same technique for specifying element names, a template can add an ele-
ment to a result tree without even knowing its element type name in advance.

While literal result elements are less powerful than xsl:element elements,
their simplicity and ease of use often makes them more convenient. Considering the
tasks performed by the templates above, literal result elements make more sense to add
the examples’ author and year elements to the result tree.

3.2 CHANGING ELEMENT NAMES FOR THE RESULT TREE
While xsl:copy copies an element node or other nodes, xsl:apply-templates
processes only the children of the current node. For an element, this means process-
ing everything between the tags, but nothing in the tags themselves.

When you use xsl:apply-templates to copy the content of an element to
the result tree without the element’s tags, you can surround that content with any-
thing you want, as long as it doesn’t prevent the document represented by that result
tree from being well-formed. For example, the template rule below takes any arti-
cle elements in the source tree and copies their contents to the result tree. The tem-
plate wraps this content in a body element and wraps that body element with an
html element.

<!-- xq96.xsl -->

<xsl:template match="article">

 <html><body>
 <xsl:apply-templates/>

 </body></html>

</xsl:template>

3.3 PARENT, GRANDPARENT, SIBLING, UNCLE, AND OTHER RELATIVE

ELEMENTS: GETTING THEIR CONTENT AND ATTRIBUTES

Chapter 2, “XPath,” on page 23, describes how XPath expressions work—the pieces
used to construct them, how they fit together, and the abbreviations that you can
substitute for some of the pieces. This section provides a quick reference for some
handy XPath expressions.

In the following example, the list element is a child of the prices element,
which is a child of the wine element:

 <wine grape="Chardonnay">
 <winery>Lindeman's</winery>

 <product>Bin 65</product>
 <year>1998</year>

 <desc>Youthful, with a cascade of spicy fig.</desc>
 <prices>
50 CHAPTER 3 ELEMENTS AND ATTRIBUTES

 <list>6.99</list>

 <discounted>5.99</discounted>
 <case>71.50</case>

 </prices>
 </wine>

The following template rule tells the XSLT processor to add information about the
list element and its relatives to the result tree. Much of the template is comprised
of text nodes such as “~~~~ Start of list element’s template ~~~~” to show where the
template’s output begins and “1. List price (current node): {” to label the results of the
xsl:apply-templates element. The curly braces around the xsl:apply-
templates and the xsl:value-of elements make it easier to see where the results
of these elements begin and end:

<!-- xq99.xsl: converts xq98.xml into xq100.xml -->

<xsl:template match="list">
~~~~ Start of list element's template  ~~~~

1. List price (current node): {<xsl:apply-templates/>}
2. Parent element (prices) contents: {<xsl:value-of select=".."/>}

3. Grandparent element contents: {<xsl:value-of select="../.."/>}
4. Attribute of grandparent: {<xsl:value-of select="../../@grape"/>}

5. Sibling node {<xsl:value-of select="../discounted"/>}
6. "Uncle" node {<xsl:value-of select="../../product"/>}

7.  Parent node's name: {<xsl:value-of select="name(..)"/>}
8.  Grandparent node's name: {<xsl:value-of select="name(../..)"/>}

~~~~ End of list element's template  ~~~~
</xsl:template>

Before we examine the template in detail, let’s look at the result created using the
wine element above as input:

~~~~ Start of list element's template  ~~~~

1. List price (current node): {6.99}
2. Parent element (prices) contents: {

      6.99
      5.99

      71.50
    }

3. Grandparent element contents: {
    Lindeman's

    Bin 65
    1998

    Youthful, with a cascade of spicy fig. 

      6.99

      5.99
      71.50 

  }

4. Attribute of grandparent: {Chardonnay}
5. Sibling node {5.99}
SIBLING ELEMENTS: CONTENT & ATTRIBUTES 51



6. "Uncle" node {Bin 65}

7.  Parent node's name: {prices}
8.  Grandparent node's name: {wine}

~~~~ End of list element's template  ~~~~

1 The line labeled “1. List price” has an xsl:apply-templates element that
tells the XSLT processor to apply any relevant templates to the node’s children.
The list node named by the xsl:template element’s match attribute has
only one child: a text node, and the default processing for a text node is to add
its contents to the result tree. The text string “6.99,” which makes up the list
element’s character data, gets added to the result between the template line’s
curly braces.

2 The line labeled “2. Parent element” has “..” as the xsl:value-of element’s
select attribute value. This abbreviation tells the XSLT processor to output
the contents of the list element node’s parent prices. With no template rule
for prices or its other children in the stylesheet, the built-in rules output the
character data content between that line’s curly braces: the contents of the three
children of the prices element, complete with their carriage returns. As this
shows, relying on built-in template rules to output the contents of an element
enclosing element children leads to less control over the appearance of the chil-
dren’s contents.

3 The third line outputs the content of the grandparent wine element using the
“..” abbreviation twice to say “the parent of the parent.” The slash separates
these two location path steps. As with line 2, the contents of this element are
output using built-in template rules, resulting in a flat dump of the source tree
text (including its carriage returns) to the result tree.

4 The fourth line, “4. Attribute of grandparent”, uses the same XPath expression as
the xsl:value-of element’s select attribute in line 3, with an addition:
one more location path step to say “after going to the parent of the parent of the
context node (../..), get the value of its grape attribute.” The attribute value
“Chardonnay” shows up between line 4’s curly braces in the result.

5 Line 5 gets the value of a sibling by first looking to the list node’s parent and
then looking at its child named discounted. The discounted element’s
content of “5.99” shows up between line 5’s curly braces in the result.

6 Line 6 looks at an “uncle” node by looking at a child of the grandparent much
the same way that line 3 looked at an attribute of the grandparent: by adding a
new location step (product, to look at the child element with that name) to
the “../..” expression that looks at the parent of the context node’s parent.

7 Line 7 uses the name() function to get the name of the node’s parent. The tem-
plate passes the “..” expression for “parent” to the function.
52 CHAPTER 3 ELEMENTS AND ATTRIBUTES

8 Line 8 resembles 7 except that it passes the “parent of parent” XPath expression
(../..) to the name() function. The element type name wine shows up
between the curly braces in the result.

The pieces of these expressions mix and match well. For example, if the context
node’s desc “uncle” node has a color attribute, and you want this attribute’s value
when processing the context node, the xsl:value-of element’s select attribute
can use the expression ../../desc/@color.

3.4 PREVIOUS, NEXT, FIRST, THIRD, LAST SIBLINGS
The previous section showed how to access nodes siblings of the context nodes as well
as nodes at different levels of the source tree from the context node, such as the parent
and grandparent. Sometimes, when you want a sibling node, specifying its name isn’t
good enough, because other siblings may have the same name. Maybe you want a
particular node because of its order among the siblings.

You can use the preceding-sibling and following-sibling axes to
refer to sibling elements, or you use a two-step location path to refer to the child of
the parent node that has a particular name. The latter method sounds more cumber-
some, but using the abbreviation of the parent axis (..) often makes it the more
convenient form to use. The next template rule uses both methods to access the sib-
lings of the third item element in the following document:

<list>

<item flavor="mint">First node.</item>
<item flavor="chocolate">Second node.</item>

<item flavor="vanilla">Third node.</item>
<item flavor="strawberry">Fourth node.</item>

</list>

If the following template rule’s match pattern only said “item,” the template rule
would apply to all item elements, but this one includes a predicate of “3”. This way,
when the XSLT processor finds item children of a node that it’s processing, it will
only apply this template rule to the third item child. (Remember, when no axis is
specified in a template rule’s match pattern, a default of “child::” is assumed, so the
template is looking for item elements that are the child of another node currently
being processed.) The template also includes text nodes (for example, “~~~~ Start of
item element’s template ~~~~” and “1. This node: {”) to show the beginning, the end
and the numbered individual steps of the template’s actions in the result. The curly
braces show exactly where the xsl:apply-templates element and
xsl:value-of elements results begin and end in the result.

<!-- xq103.xsl: converts xq102.xml into xq104.txt -->

<xsl:template match="item[3]">

~~~~ Start of item element's template ~~~~
1. This node: {<xsl:apply-templates/>}
PREVIOUS, NEXT, FIRST, THIRD, LAST SIBLINGS 53



2. First node: {<xsl:value-of select="../item[1]"/>}

3. Last node: {<xsl:value-of select="../item[last()]"/>}
4. Preceding node: 

   {<xsl:value-of select="preceding-sibling::item[1]"/>}
5. Next node: {<xsl:value-of select="following-sibling::item[1]"/>}

6. flavor attribute value of first node: 
   {<xsl:value-of select="../item[1]/@flavor"/>}

~~~~ End of item element's template ~~~~
</xsl:template>

Applying this template creates a result that places the contents of each referenced
node between curly braces:

~~~~ Start of item element's template ~~~~
1. This node: {Third node.}

2. First node: {First node.}
3. Last node: {Fourth node.}

4. Preceding node: 
   {Second node.}

5. Next node: {Fourth node.}
6. flavor attribute value of first node: 

   {mint}
~~~~ End of item element's template ~~~~

1 Line 1 (“This node:”) adds the contents of the current item element to the
result tree to show the XSLT processor’s location in the source tree document
during the execution of this template rule.

2 Line 2 has a two-step location path. The first step (..) tells the XSLT processor
to look at the node’s parent, and the second step tells it to look at the first item
child of that parent. Without the second step’s predicate in square brackets, the
expression ../item would refer to all of the parent node’s item children, but
because xsl:value-of only returns a string version of the first one, the [1]
predicate in this case is not completely necessary. It’s still worth including
because it makes the stylesheet’s intent clearer.

Any number could go in that predicate, although a number for which no
item exists—for example, a predicate of [8] when there are four nodes in the
list—tells the XSLT processor to look for something that isn’t there, so it won’t
get anything. The match pattern in the xsl:template element’s start-tag is a
good example of selecting a node by its number; it uses [3] to indicate that
this template should be applied to the third item child of the node currently
being processed.

3 Line 3 uses the last() function in its predicate. The XSLT processor replaces
this with the number of nodes in the node set selected by the axis and node test
(in this case, by the default child axis and the item node test). This gives the
same result as putting the actual number (in this case, 4) between those square
brackets. When you put this node test of “item” and predicate of [last()]
54 CHAPTER 3 ELEMENTS AND ATTRIBUTES

together, you’re asking for the last of the parent node’s item elements. When the
context node and all of its siblings are item elements, this is the simplest way to
get the last sibling, especially if you don’t know how many siblings exist.

4 Line 4 (which is actually split over two lines to fit on this book’s page) uses the
preceding-sibling axis to access the node before the context node. With-
out the [1] predicate, it would take the first node in the preceding-sibling
node set in document order, but with the explicit inclusion of the number “1,”
the XSLT processor counts from the end of the node set instead of from the
beginning. It only counts from the end with axes for which this makes sense; for
the preceding-sibling axis, the first sibling node that precedes the context
node is the one just before it. XSLT processors also count backwards like this for
the ancestor axis (for example, ancestor[1] refers to the parent node and
ancestor[2] refers to the grandparent node), the ancestor-or-self
axis, and the preceding axis.

5 Line 5 looks like line 4 except that it uses the following-sibling axis spec-
ifier to look at the siblings after the context node. The predicate of [1] is not
necessary, because when the XSLT instruction xsl:value-of is pointed at a
node list, it returns a string value of the first one it can find in document order,
but including the predicate here makes it easier to see the exact intent of the
XPath expression.

6 Line 6 (which is also split over two lines) shows how easily you can get an
attribute value from one of these siblings. Its XPath expression repeats the one
from line 2 and adds one more step to the location path, @flavor, to get the
flavor attribute value of that first item sibling. You could add this location
step to any of the XPath expressions in this example to get the corresponding
item element’s flavor attribute value.

3.5 CONVERTING ELEMENTS TO ATTRIBUTES FOR THE RESULT TREE

While the xsl:value-of element is a great way to pick out a value on the input
tree and insert it someplace in the result tree—especially when converting attributes
to elements—you can’t use this element just anywhere. For example, you can’t use it
to assign an attribute value to an element on the result tree. The following template
shows a misguided attempt at doing just that, which puts the xsl:value-of ele-
ment inside the start-tag of a wine literal result element. This very ill-formed tem-
plate will make any XML parser choke, and, if the XML parser doesn’t like the
template, it’s never going to get to the XSLT processor:

<!-- xq106.xsl: won't work -->

<xsl:template match="wine">
<wine brand="<xsl:value-of select='winery'>"> <!-- WRONG! -->

</xsl:template>
CONVERTING ELEMENTS TO ATTRIBUTES 55

This next template, on the other hand, does take the content of two input elements
and makes them attribute values in the output document:

<!-- xq107.xsl: converts xq108.xml into xq109.xml -->

<xsl:template match="wine">
<wine varietal="{@grape}" brand="{winery}" year="{../year}"/>

</xsl:template>

<xsl:template match="year"/>

For example, this template turns the winery element content “Los Vascos” in the
input

<vintage>

 <year>1998</year>
 <wine grape="Cabernet Sauvignon">

 <winery>Los Vascos</winery>
 </wine>

</vintage>

into the brand attribute’s value in the output:

<wine varietal="Cabernet Sauvignon" brand="Los Vascos" year="1998"/>

Although the first template grabs the value of the year element, and puts it in the result
tree wine element’s start-tag, XSLT’s built-in template rules will still add the year ele-
ment value just before that wine element in the result tree. To prevent this, the second
template above tells the XSLT processor “when you find a year element node, add
nothing to the result tree.”

Why isn’t this necessary for the winery element? The first template also grabs
its value and adds that value as an attribute value of the result tree’s wine element,
but that template has no xsl:apply-templates element, which would tell the
XSLT processor to apply any relevant templates to the wine element’s children. So,
even the built-in templates won’t be applied to the winery element. (This didn’t
affect the year element because that element isn’t a child of the wine element.)

Using the same technique, the year element’s content “1998” becomes the value
of a year attribute in the result.

The template does this using attribute value templates. An attribute value tem-
plate is an expression between curly braces ({}) that you can use for the dynamic gen-
eration of certain attribute values in an XSLT stylesheet. When an XSLT processor
finds an attribute value template, it evaluates the expression and replaces the attribute
value template with the result of the evaluation.

The preceding template uses three attribute value templates:

• One attribute value template inserts the value of the wine element’s grape
attribute as the value of the result tree’s varietal attribute.

• Another uses the content of the wine element’s winery child element as the
value for the brand attribute.
56 CHAPTER 3 ELEMENTS AND ATTRIBUTES

• And one inserts the value of the wine element’s year sibling element as the
value of the year output attributes.

The attribute value template for the brand attribute value shows how simple the
conversion of an element to an attribute can be if the element to convert is a child of
the element named in the match pattern. In this case, the year element is a child of
the wine element named by the xsl:template element’s match attribute. The
year attribute’s attribute value template shows that you have a broad range of
options if you want to use the value of an element that isn’t a child of the match pat-
tern element as your result tree attribute value—and remember, you have the full
power of XPath available to identify the text that you want to plug in there.

For related information, see
• section 3.3, “Parent, grandparent, sibling, uncle, and other relative elements: get-

ting their content and attributes,” page 50 for background on the use of the @
and ../ notation.

• section 3.13, “Adding new attributes,” page 77 for more on ways to add new
attributes to your output elements.

3.6 COPYING ELEMENTS TO THE RESULT TREE
A template can copy an element from the source tree to the result tree by putting its
contents either between literal result element tags or in an xsl:element instruc-
tion that gives the result element the same name it had in the source tree. If the
source element has attributes, a template rule can copy them with explicitly named
xsl:attribute elements, or it can add them directly to the literal result element.

For example, to copy the prices element in this document,

<wine grape="Cabernet">

 <winery>Duckpond</winery>
 <product>Merit Selection</product>

 <year>1996</year>
 <prices date="12/1/01">

 <list>13.99</list>
 <discounted>11.00</discounted>

 </prices>

</wine>

the following template uses a literal result element and adds its date attribute value
with an attribute value template:

<!-- xq112.xsl -->

<xsl:template match="prices">
 <prices date="{@date}">

 <xsl:apply-templates/>
 </prices>

</xsl:template>
COPYING ELEMENTS TO THE RESULT TREE 57

XSLT offers better ways to copy elements. For example, you shouldn’t have to write
out the copied element’s name in the literal result element or xsl:element instruc-
tion. Once you tell the XSLT processor to copy certain elements and attributes to the
result tree, it should be able to copy their names as well as contents.

The simplest way to copy a node is with the xsl:copy element, which copies
the node named in the template rule’s match attribute. It doesn’t copy any of the
node’s children. If you’re copying an element, this means it won’t copy any of its child
elements, character data, or attributes. For example, the following template rule

<!-- xq113.xsl: converts xq111.xml into xq114.xml -->

<xsl:template match="prices">
 <xsl:copy/>

</xsl:template>

turns the prices element above into this:

<prices/>

This prices element has the element type name, but with no attributes or content,
it doesn’t even need an end-tag, so it comes out as a single empty element.

With an xsl:apply-templates instruction inside that xsl:copy instruc-
tion to process the element’s content, like this,

<!-- xq115.xsl: converts xq111.xml into xq116.xsl -->

<xsl:template match="prices">
 <xsl:copy>

 <xsl:apply-templates/>
 </xsl:copy>

</xsl:template>

the result has the prices start- and end-tags with only the descendant elements’ char-
acter data, because the list and discounted elements’ handling are left to XSLT’s
built-in templates:

 <prices>

 13.99
 11.00

 </prices>

Neither the xsl:copy element nor XSLT’s built-in templates copy the prices ele-
ment’s attribute. You can include attributes yourself in the xsl:copy element, as in
the following, which copies the prices element’s date attribute and inserts a new,
hard-coded vendor attribute:

<!-- xq117.xsl: converts xq111.xml into xq118.xsl -->

<xsl:template match="prices">

 <xsl:copy>

 <xsl:attribute name="date">

 <xsl:value-of select="@date"/>
58 CHAPTER 3 ELEMENTS AND ATTRIBUTES

 </xsl:attribute>

 <xsl:attribute name="vendor">

 <xsl:text>Snee Wines</xsl:text>

 </xsl:attribute>

 <xsl:apply-templates/>
 </xsl:copy>

</xsl:template>

This template creates the following result from the same source document:

 <prices date="12/1/01" vendor="Snee Wines">
 13.99

 11.00
 </prices>

If you really want to copy the element node and its attribute and children elements,
the xsl:copy-of element makes this easy. For example, the following template

<!-- xq119.xsl: converts xq111.xml into xq120.xml -->

<xsl:template match="wine">
 <xsl:copy-of select="."/>

</xsl:template>

makes an exact copy of the wine element shown earlier:

<wine grape="Cabernet">
 <winery>Duckpond</winery>

 <product>Merit Selection</product>
 <year>1996</year>

 <prices date="12/1/01">
 <list>13.99</list>

 <discounted>11.00</discounted>
 </prices>

</wine>

The xsl:copy-of instruction has a required select attribute to tell this
instruction what to copy. In the example above, the single period (an abbreviation
of the XPath expression self::node()) tells it to copy the context node. Because
it’s an xsl:copy-of instruction and not an xsl:copy one, it copies all the
node’s children as well. (The xsl:copy instruction has no attributes to tell it what
to copy; the xsl:copy instruction can only copy the context node.) You can use
any XPath expression you like as the select value. With a select attribute
value of something other than “.”, the xsl:copy-of element can grab almost
any set of nodes in the source tree and group them together wherever you want in
the result tree.

To really understand the power of xsl:copy-of, let’s compare it to the
xsl:value-of instruction. Both help you grab an arbitrary part of the source tree
while the XSLT processor is processing another part of the tree. The xsl:value-of
element doesn’t add a copy of the grabbed node to the result tree, but a text node with
COPYING ELEMENTS TO THE RESULT TREE 59

a string representation of it. When xsl:value-of is told to convert a set of nodes
to a string, it only gets the first one in that set, so it’s only useful for getting one node’s
value at a time. The xsl:copy-of element, on the other hand, gets a whole node set
and all of the nodes’ children.

��� The xsl:copy-of element copies an element and all its element children,
but xsl:copy-of does more than that: if it’s copying an element node,
it copies all of its node children (and descendants), whether they’re element,
attribute, comment, namespace, text, or processing instruction nodes.

Let’s look at a stylesheet that demonstrates the difference between the xsl:value-
of and xsl:copy-of instructions. The template in the following example has one
of each, with the same XPath expression in both select attributes:

<!-- xq121.xsl: converts xq111.xml into xq122.xml -->

<xsl:template match="product">

 xsl:values-of:
 <xsl:value-of select="following-sibling::*"/>

 xsl:copy-of:
 <xsl:copy-of select="following-sibling::*"/>

</xsl:template>

The XPath expression following-sibling::* refers to all the sibling nodes,
regardless of their name, following the current one. In the XML document above,
product has two siblings after it: year and prices. The prices sibling has two
element children. When xsl:value-of converts this set of nodes to a text node to
add to the result tree, this instruction only gets the first one, and it gets the node’s
value—its character data, which is just the string “1996” in this case:

 xsl:value-of:

 1996

 xsl:copy-of:

 <year>1996</year><prices date="12/1/01">
 <list>13.99</list>

 <discounted>11.00</discounted>
 </prices>

With the same XPath expression in its select attribute, the xsl:copy-of ele-
ment adds a lot more to the result tree: the tags, attributes, and content of all the
nodes to which the expression refers.
60 CHAPTER 3 ELEMENTS AND ATTRIBUTES

.

Remember, xsl:copy-of is getting copies of the year, prices, and other ele-
ments retrieved by the following-sibling::* expression. If those nodes have
their own template rules with instructions about processing them, the XSLT proces-
sor will still apply those templates to them. The product template rule’s actions
with its xsl:copy-of instruction have no effect on the actions of the element’s
own templates.

For more information on xsl:value-of, see section 3.11.2, “Moving text
with xsl:value-of,” page 71.

3.7 COUNTING ELEMENTS AND OTHER NODES

The count() function returns the number of nodes in the node set passed to it. In
effect, it counts the number of nodes described by an XPath expression. To demon-
strate, we’ll count different groups of nodes in this document:

<employees>

<employee hireDate="04/23/1999" officer="yes">

<last>Hill</last>
<first>Phil</first>

<salary>100000</salary>
</employee>

<employee hireDate="09/01/1998" officer="no">

<last>Herbert</last>

<first>Johnny</first>
<!-- Salary may need updating -->

<salary>95000</salary>
</employee>

<employee hireDate="08/20/2000">

<last>Hill</last>

Figure 3.1 Getting the “following-sibling::” node set for a context node of

“product”: xsl:value-of vs. xsl:copy-of
COUNTING ELEMENTS AND OTHER NODES 61

<first>Graham</first>

<salary>89000</salary>
</employee>

<employee hireDate="10/16/2000">
<last>Sterling</last>

<first>Moss</first>
<salary>97000</salary>

</employee>

</employees>

The document element is an employees element, and the following template rule
counts four sets of nodes within that document:

<!-- xq125.xsl: converts xq124.xml into xq126.txt -->

<xsl:template match="employees">

A. Number of employees:
<xsl:value-of select="count(employee)"/>

B. Number of officers:
<xsl:value-of select="count(employee[@officer='yes'])"/>

C. Number of employees without 'officer' attribute set:
<xsl:value-of select="count(employee[not(@officer)])"/>

D. Number of comments in 'employees' element:
<xsl:value-of select="count(//comment())"/>

</xsl:template>

<xsl:template match="employee"/>

Before we look at the ways in which this template uses the count() function, let’s
consider the result of counting each node set:

A. Number of employees:

4
B. Number of officers:

1
C. Number of employees without 'officer' attribute set:

2
D. Number of comments in 'employees' element:

1

The first use of the function, in part A, counts the number of employee child ele-
ments of the employees element. The answer is 4. By passing “employee” as an
argument to the count() function, the template tells the XSLT processor to count
all the child elements of the context node (employees) that have that name.

Part B adds a predicate to the employee node test passed as an XPath expression
to the count() function: [@officer='yes']. This way, only employee ele-
ments with an officer attribute value of “yes” are counted. As the result shows, the
answer is 1.

A predicate of [@officer] with a node test of employee would tell the
count() function to count all the employee elements having the officer attribute
62 CHAPTER 3 ELEMENTS AND ATTRIBUTES

set. Part C of the preceding stylesheet takes the opposite approach: a predicate that
puts the @officer part inside of a not() function tells the count() function to
count all the employee elements that don’t have the officer attribute set. The
answer is 2.

Finally, part D of the template illustrates that you don’t have to count elements
with the count() function; you can count any kind of node type you want. Part D
counts comments, and because the expression begins with the XPath abbreviation //
(meaning “/descendant-or-self::node()/”) part D’s expression counts all the
comments in the document, and finds 1.

This is just a sample of what you can do with the count() function. Remember
that if you can describe a subset of a document’s nodes using an XPath expression, you
can count the nodes in that subset, whether they are element nodes or any other kind
of nodes.

3.8 DELETING ELEMENTS FROM THE RESULT TREE
A template rule essentially says “when you find a source node that corresponds to the
value of my match attribute, add the template in my contents to the result tree.” If
the template rule has no contents, then nothing gets added to the result tree for that
source node, essentially deleting it from the result tree copy of the source tree.

For example, this template rule says “when you find a project element, add
nothing to the result tree”:

<!-- xq128.xsl -->

<xsl:template match="project"></xsl:template>

(Of course, this xsl:template element could also be written as a single empty-
element tag.)

The next template takes advantage of the flexibility allowed in the patterns allowed
in the template element’s match attribute. While a match value of “project”
would delete all the project elements from the output, the following template rule
only deletes project elements whose status attributes have the string “canceled”
as their value:

<!-- xq129.xsl -->

<xsl:template match="project[@status='canceled']"/>

Another way to delete an element is to be selective about which of its parent’s children
get processed. With no select attribute specified, an xsl:apply-templates
element processes all the children of the tree node being processed. When an
xsl:apply-templates element does include a select attribute, you can be
pickier about which children to process. For example, the following template will pro-
cess all of a customer element’s children:

<!-- xq130.xsl -->

 <xsl:template match="customer">
DELETING ELEMENTS FROM THE RESULT TREE 63

 <client>

 <xsl:apply-templates/>
 </client>

 </xsl:template>

And this template will only output the lastName and phone children of the cus-
tomer elements, omitting any others:

<!-- xq131.xsl -->

<xsl:template match="customer">
 <client>

 <xsl:apply-templates select="lastName"/>
 <xsl:apply-templates select="phone"/>

 </client>
</xsl:template>

3.9 DUPLICATE ELEMENTS, DELETING

When we copy a source tree to a result tree, the basic idea of deleting duplicate ele-
ments as we make a copy of a source tree document sounds simple: Don’t copy an ele-
ment from the source tree to the result tree if an identical one has already been
copied. But what do we mean by “identical”? According to the XPath specification,
two node sets are considered equal if their string values are equal. The string values
are the concatenation of any text node descendants of the elements. Text nodes store
character data contents of elements—the part between start- and end-tags that aren’t
child elements—so two nodes with different attributes or with different values in the
same attribute are still considered equal, because attributes aren’t taken into account
in the XPath version of element equality. So, if you only want to compare element
content when determining which elements are duplicates, an equal sign will do, but if
you want to consider attribute values, you have to explicitly say so.

Let’s look at an example. While no two line elements in the following docu-
ment are exactly the same—each, for instance, has at least a different lid (“line ID”)
attribute value—we’ll examine several ways to avoid copying certain elements to the
result tree because they have content or an attribute value in common with others.

<sample>

<line lid="u1">hello</line>
<line color="red" lid="u2">hello</line>

<line color="blue" lid="u3">hello</line>
<line lid="u4">hello there</line>

<line color="blue" lid="u5">hello there</line>
<line color="blue" lid="u6">hello</line>

</sample>

The first stylesheet has a template rule for line elements that copies only one ele-
ment to the result tree if it’s not equal to any of the line elements in the preced-
ing axis—that is, not equal to any line element that finished before the one being
64 CHAPTER 3 ELEMENTS AND ATTRIBUTES

processed began. (See section 2.2.4, “preceding and following,” page 32, for more on
this axis.) The other template copies all the other nodes verbatim:

<!-- xq495.xsl: converts xq494.xml into xq496.xml -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="line">

<xsl:if test="not(. = preceding::line)">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:if>
</xsl:template>

<xsl:template match="@*|node()">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

As I mentioned above, the XPath spec considers elements equal if the string values
that represent their contents are equal. The contents are the parts between the tags, so
attribute values aren’t considered in this kind of equality test. Once one line ele-
ment with the contents “hello” is added to the result tree, no more may be added,
regardless of their attribute values, and likewise for the “hello there” elements:

<sample>

<line lid="u1">hello</line>

<line lid="u4">hello there</line>

</sample>

This variation on the line template rule above has a different condition in the test
attribute of its xsl:if instruction. It won’t add a line element to the result tree if
any preceding line element had the same value in its color attribute as that in the
context node line element.

<!-- xq497.xsl: converts xq494.xml into xq498.xml -->

<xsl:template match="line">

<xsl:if test="not(@color = preceding::line/@color)">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:if>

</xsl:template>

Once the XSLT processor adds one line element with a color attribute value of
“blue”, it won’t add any more, even when the line element has different content,
such as the “u5” one with “hello there” as its content:
DUPLICATE ELEMENTS, DELETING 65

<sample>

<line lid="u1">hello</line>
<line lid="u2" color="red">hello</line>

<line lid="u3" color="blue">hello</line>
<line lid="u4">hello there</line>

</sample>

The next version of the same template rule won’t copy any line element with the
same content and the same color attribute value as any earlier line element. This
version is more complicated than the earlier examples. First, this template rule sets
two local variables with the contents and color attribute value of the context node
to use in the comparison. Then, the comparison in the predicate (that is, in the
square brackets) has a Boolean and to connect the two conditions. It’s checking for
preceding nodes that meet both conditions. The not() function wrapped around
the whole XPath expression tells the XSLT processor to only process list elements
that don’t meet both of these conditions:

<!-- xq499.xsl: converts xq494.xml into xq500.xml -->

<xsl:template match="line">
<xsl:variable name="contents" select="."/>

<xsl:variable name="colorVal" select="@color"/>
<xsl:if test =

"not(preceding::line[(. = $contents) and

(@color = $colorVal)])">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:if>

</xsl:template>

The result of running the source document with this version of the template has all
the line elements except the “u6” one, which is the only one with contents and a
color attribute that match the contents and color attribute of an earlier line ele-
ment (“u3”):

<sample>
<line lid="u1">hello</line>

<line lid="u2" color="red">hello</line>
<line lid="u3" color="blue">hello</line>

<line lid="u4">hello there</line>
<line lid="u5" color="blue">hello there</line>

</sample>

To compare the lid attribute value along with the contents and color attribute
value of the line elements you would declare another local variable and add another
condition inside the square brackets. Remember, though, that the more complicated
a comparison condition you have, the more work the XSLT processor must do, and
the slower the stylesheet will run.
66 CHAPTER 3 ELEMENTS AND ATTRIBUTES

If you know that all potential duplicate elements are siblings, as they are in this
chapter’s examples, you can speed things up by using the preceding-sibling
axis instead of the preceding axis so that the XSLT processor won’t try to check as
many nodes for equality. (See section 2.2.3, “preceding-sibling and following-sibling,”
page 29, for more on this axis.) This chapter’s examples use the preceding axis
because it does a more complete check that would cover a wider variety of cases.

3.10 EMPTY ELEMENTS: CREATING, CHECKING FOR
To an XML parser, the elements <sample/> and <sample></sample> are the
same: they’re both empty sample elements. When your stylesheet adds an element
to the result tree, if it creates no content for that element, it has created an empty ele-
ment, whether that element type was declared as being empty in a DTD or not. To
demonstrate, let’s look at a template rule that copies the following element and adds
empty sample elements to the copy:

<test>Dagon his Name, Sea Monster</test>

The stylesheet adds seven empty sample elements after the result tree’s test start-
tag. The fourth, fifth, and sixth resemble the first three except that each of these
empty elements includes an attribute specification:

<!-- xq135.xsl: converts xq134.xml into xq476.xml -->

<xsl:template match="test">

<test>
1. <sample/>

2. <sample></sample>
3. <xsl:element name="sample"/>

4. <sample color="green"/>
5. <sample color="green"></sample>

6. <xsl:element name="sample">
<xsl:attribute name="color">green</xsl:attribute>

</xsl:element>

7. <sample> </sample>

<xsl:apply-templates/>
</test>

</xsl:template>

Whether elements are shown in the stylesheet as a single-tag empty element, a start-
and end-tag pair with nothing between them, or as xsl:element instruction with
no content specified, they all show up in the result tree as empty elements:

<test>

1. <sample/>
2. <sample/>

3. <sample/>

4. <sample color="green"/>
EMPTY ELEMENTS: CREATING, CHECKING FOR 67

5. <sample color="green"/>

6. <sample color="green"/>

7. <sample/>Dagon his Name, Sea Monster</test>

The seventh sample is a special case. If space characters (tabs, carriage returns, or
spacebar spaces) and no others occur between two tags, an XML parser does not treat
those characters as character data, which is why that seventh sample element is con-
sidered empty. This does look a little confusing in the stylesheet, so it’s a good idea to
avoid it when possible.

How about checking for empty elements so that your stylesheet can perform cer-
tain actions if they’re empty and others if they’re not? The following test document
has seven sample elements, and the first four are empty.

<test>

<sample eid="A"/>
<sample eid="B"></sample>

<sample eid="C"> </sample>
<sample eid="D">

</sample>
<sample eid="E">some text</sample>

<sample eid="F"><color>blue</color></sample>
<sample eid="G"><color>red</color>more text</sample>

</test>

How can a template rule know which ones are empty? When the node set “.” (an
abbreviation of “self::node()”) is passed to the normalize-string() func-
tion, the function converts this node set to a string (because it only acts on strings)
and then does its real job: it converts any multispace sequences to a single space and
removes all leading and trailing spaces. (See section 5.7.1, “Extracting and comparing
strings,” page 153 for more on this function.) If there’s anything left, this means that
the sample element was not empty, and that makes the Boolean value of the
xsl:when element’s test attribute true.

The following template checks this Boolean value before adding a message about
the sample element to the result tree (see section 3.8, “Deleting elements from the
result tree,” page 63, for more on these):

<!-- xq137.xsl: converts xq136.xml into xq138.txt -->

<xsl:template match="sample">

<xsl:choose>
<xsl:when test="normalize-space(.)">

Sample element <xsl:value-of select="@eid"/> isn't empty.
</xsl:when>

<xsl:otherwise>
Sample element <xsl:value-of select="@eid"/> is empty.

</xsl:otherwise>
</xsl:choose>

</xsl:template>
68 CHAPTER 3 ELEMENTS AND ATTRIBUTES

When the test value is true, the stylesheet adds a message to the result tree about
that sample element not being empty. When run with the XML document above, the
stylesheet adds that message for sample elements E, F, and G:

Sample element A is empty.

Sample element B is empty.

Sample element C is empty.

Sample element D is empty.

Sample element E isn't empty.

Sample element F isn't empty.

Sample element G isn't empty.

When nothing is left after normalize-space() deletes any unnecessary space,
the xsl:choose instruction’s xsl:otherwise element adds a message to the
result tree about that sample element being empty. The xsl:otherwise element
adds that message for sample elements A, B, C, and D.

Some stylesheets use simpler syntax to check for empty elements, but it’s safer to
use the normalize-space() function to catch odd cases as well as more typical
empty elements.

3.11 MOVING AND COMBINING ELEMENTS FOR THE RESULT TREE
Two ways exist to move an element from one position in the source tree to a differ-
ent position in the result tree: reordering an element’s children with xsl:apply-
templates, and moving text with xsl:value of.

3.11.1 Reordering an element’s children with xsl:apply-templates

The first way to move an element is the easiest: change the order of the parent ele-
ment’s children by selectively applying xsl:apply-templates elements for each
sibling in the order you want them to appear on the source tree. A single
xsl:apply-templates element with no attributes will process the element’s chil-
dren in order. In contrast, a series of xsl:apply-templates elements, each using
the select attribute to specify a particular child, lets you process the children in any
order you wish.

For example, this template rule

<!-- xq141.xsl -->

 <xsl:template match="customer">

 <client>

 <xsl:apply-templates/>
 </client>

 </xsl:template>

will process all of this customer element’s child elements in order:
MOVING & COMBINING RESULT TREE ELEMENTS 69

<customer>

 <last>Hill</last>
 <first>Phil</first>

 <phone>212-555-1212</phone>
 <address>166 Main St.</address>

 <city>New York</city>
 <state>NY</state>

 <zip>10001</zip>
</customer>

The following template rule, however, outputs them in a different order: the order
specified by the select values in the template’s xsl:apply-templates ele-
ments. (You don’t have to list all child elements; section 3.8, “Deleting elements from
the result tree,” page 63, shows how the inclusion of xsl:apply-templates for
only certain child elements is an effective way to delete elements from your output.)

<!-- xq143.xsl: converts xq144.xml into xq145.xml -->

<xsl:template match="customer">

 <customer>
 <xsl:apply-templates select="phone"/>

 <xsl:apply-templates select="firstName"/>
 <xsl:apply-templates select="lastName"/>

 </customer>
</xsl:template>

This template will turn this customer element

<customer>
 <lastName>Hill</lastName>

 <firstName>Phil</firstName>
 <phone>212-555-1212</phone>

</customer>

into this:

<customer>
 <phone>212-555-1212</phone>

 <firstName>Phil</firstName>
 <lastName>Hill</lastName>

</customer>

��� Along with the template for the element whose children are being reor-
dered, the children elements themselves need a template rule or rules to
pass along their tags as well as their contents. Many stylesheets address this
need by including a template rule such as the following for all the nodes
that have no more specific rules in that stylesheet. This template rule just
copies them to the result tree:

<!-- xq146.xsl -->

<xsl:template match="@*|node()">

 <xsl:copy>
70 CHAPTER 3 ELEMENTS AND ATTRIBUTES

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>
</xsl:template>

XSLT’s default templates aren’t enough to copy, because while they copy
element content, they don’t copy tags or attributes. (See section 6.8,
“Stripping all markup from a document,” page 224.)

3.11.2 Moving text with xsl:value-of

For more complex reordering, you’ll need the xsl:value-of element. This adds
the text specified by its select attribute to the point in the result tree being defined
by the template. Because the select attribute can have an XPath expression value,
you can grab an element from anywhere in the source tree. As long as you remember
to delete the source node so that it doesn’t show up in its original position in the out-
put, you’ve moved that element from one place in the input to another in the output.

For example, the first template below converts a grape element to a product
element. Before the grape element’s content, the template inserts the value of the
grape element’s brand sibling. (The xsl:text element between them ensures
that a space gets inserted there.) The second template prevents the brand element
from being copied to the result tree:

<!-- xq148.xsl: converts xq149.xml into xq150.xml -->

<xsl:template match="grape">
 <product>

 <xsl:value-of select="../brand"/><xsl:text> </xsl:text>
 <xsl:apply-templates/>

 </product>
</xsl:template>

<xsl:template match="brand"/>

Working together, these two templates will convert this

<wine>
 <grape>Cabernet Sauvignon</grape>

 <brand>Los Vascos</brand>
</wine>

to this:

<product>Los Vascos Cabernet Sauvignon</product>

For related information, see:

• section 3.8, “Deleting elements from the result tree,” page 63 for more on delet-
ing elements from their default position in the result tree and eventual output

• section 6.11, “Whitespace: preserving and controlling,” page 229
MOVING & COMBINING RESULT TREE ELEMENTS 71

3.12 SELECTING ELEMENTS BASED ON: ELEMENT
NAME, CONTENT, CHILDREN, PARENTS

A template rule can select elements for processing based on their element type
name, their children, or their parents by using the appropriate match expression in
the select attribute of the xsl:template element that specifies the template
rule. Match expressions are a subset of XPath expressions. (Section 2.3, “Node tests,”
page 41, and section 2.4, “Predicates,” page 43 go into more detail on these two
building blocks of XPath and match expression syntax.)

This chapter summarizes the form of the node tests as well as the predicates that
may be necessary to select elements based on their name, children, or parents. It also
describes a predicate that lets you select elements based on their contents.

Selecting elements based on their element type name is a basic task in XSLT. The
first template in the following, for example, selects all figure elements and adds their
contents (which, considering the actions of the rest of the stylesheet, means the char-
acter data in each figure element’s title element) to the result tree with square
brackets around it:

<!-- xq153.xsl: converts xq477.xml into xq154.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>

<xsl:strip-space elements="*"/>

<xsl:template match="figure">
[<xsl:apply-templates/>]

</xsl:template>

<xsl:template match="para | chapter/title |

sect1/title | sect2/title "/>

</xsl:stylesheet>

(The second template suppresses a few elements to keep the result from being too
cluttered; the xsl:strip-space element removes extraneous whitespace from the
output. See section 6.11.1, “xsl:strip-space and xsl:preserve-space,” page 230, for
more.) When applied to this document,

<chapter><title>The Chapter</title>

<sect1><title>First Section</title>
<figure><title>First picture in book</title>

<graphic fileref="pic1.jpg"/></figure>
</sect1>

<sect1><title>Second Section</title>
<sect2>

<title>Second Section, First Subsection</title>
<figure><title>Second picture in book</title>

<graphic fileref="pic2.jpg"/></figure>
</sect2>
72 CHAPTER 3 ELEMENTS AND ATTRIBUTES

<sect2>

<title>Second Section, Second Subsection</title>
<para>This one has no figure.</para>

</sect2>
<sect2>

<title>Second Section, Third Subsection</title>
<figure><title>Fourth picture in book</title>

<graphic fileref="pic3.jpg"/></figure>
</sect2>

</sect1>
</chapter>

the result shows square brackets around the text content of each figure element—the
figure’s title followed by a carriage return.

[First picture in book]

[Second picture in book]

[Fourth picture in book]

To select an element based on its parent, your match pattern should have at least two
location steps: one identifying the parent and one identifying the appropriate child
element. For example, the first template in the following stylesheet will be applied
only to title elements that are children of sect1 elements. Those elements will be
added to the result tree with square brackets around their contents:

<!-- xq155.xsl: converts xq477.xml into xq156.txt -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="text"/>

<xsl:template match="sect1/title">
[<xsl:apply-templates/>]

</xsl:template>

<xsl:template match="para"/> <!-- reduce output clutter -->

</xsl:stylesheet>

Although the source document had many title elements, only the ones that are
children of sect1 elements have square brackets around them in the result tree:

The Chapter

[First Section]

First picture in book

[Second Section]

Second Section, First Subsection

Second picture in book

Second Section, Second Subsection

Second Section, Third Subsection

Fourth picture in book
SELECTING ELEMENTS 73

To select elements based on their children, the node test of the match condition’s final
location step (or only location step, if there’s just one) should name the element in
which you’re interested, and the predicate can then name the child element that must
be present in that element to qualify that element for processing by this template rule.

For example, the following stylesheet’s single template rule is looking for sect2
elements. As the predicate in square brackets shows, this template rule only wants
sect2 elements that have a figure element in them. When it finds them, it outputs
their contents surrounded by square brackets:

<!-- xq157.xsl: converts xq477.xml into xq158.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>

<xsl:strip-space elements="*"/>

<xsl:template match="sect2[figure]">
<xsl:value-of select="title"/>

[<xsl:apply-templates/>]
</xsl:template>

</xsl:stylesheet>

The square brackets in the result show the contents of the sect2 elements that were
processed by this template rule. There are no square brackets around the sect2 ele-
ment with the paragraph that says “This one has no figure”, because it didn’t qualify
for processing by this template. Instead, the XSLT default template rules built into all
XSLT processors passed this sect2 element’s text content along to the result tree:

The Chapter

First Section

First picture in book

Second Section

Second Section, First Subsection
[

Second Section, First Subsection
Second picture in book

]

Second Section, Second Subsection
This one has no figure.

Second Section, Third Subsection
[

Second Section, Third Subsection

Fourth picture in book

]

74 CHAPTER 3 ELEMENTS AND ATTRIBUTES

Using the XPath contains() function in the predicate of a match condition lets a
template rule select an element based on its content. For example, in the following
document let’s say we’re only interested in the para elements that have the text string
“the” in them:

<story>

<chapter><title>Chapter 1</title>

<para>A Dungeon horrible, on all sides round</para>
</chapter>

<chapter><title>Chapter 2</title>
<para>More unexpert, I boast not: them let those</para>

<para>Contrive who need, or when they need, not now.</para>
<sect><title>Chapter 2, Section 1</title>

<para>For while they sit contriving, shall the rest,</para>
<para>Millions that stand in Arms, and longing wait</para>

</sect>
</chapter>

<chapter><title>Chapter 3</title>
<para>So thick a drop serene hath quenched their Orbs</para>

</chapter>

</story>

The first of the following two templates for para elements has a predicate that
tells the XSLT processor to apply this template rule only to para elements with the
string “the” in their contents. The second template rule processes all the other para
elements:

<!-- xq160.xsl: converts xq159.xml into xq161.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>

<xsl:template match="para[contains(,'the')]">

*** This para has "the" in it: ***
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="para">

*** This para element not processed by other template: ***
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="title"/> <!-- reduce output clutter -->

</xsl:stylesheet>

Each template rule adds two things to the result tree: a message identifying the tem-
plate that was called, and the para element’s contents.

*** This para element not processed by other template: ***
A Dungeon horrible, on all sides round
SELECTING ELEMENTS 75

*** This para has "the" in it: ***

More unexpert, I boast not: them let those

*** This para has "the" in it: ***

Contrive who need, or when they need, not now.

*** This para has "the" in it: ***

For while they sit contriving, shall the rest,

*** This para element not processed by other template: ***

Millions that stand in Arms, and longing wait

*** This para has "the" in it: ***

So thick a drop serene hath quenched their Orbs

Only one of the para elements that triggered the first template rule had the word
“the” in it, but several others contained words that had the string “the”—for example,
“them,” “they,” and “their.”

This works even when the string is in a child or other descendant element. For
example, this next stylesheet is identical to the last one, except that the first template
is looking for chapter elements, not para elements, with “the” in them:

<!-- xq162.xsl: converts xq159.xml into xq163.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>

<xsl:template match="chapter[contains(,'the')]">

*** This chapter has "the" in it: ***
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="chapter">

*** This chapter element not processed by other template: ***
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="title"/>

</xsl:stylesheet>

The result shows that the first chapter doesn’t have “the” in it, and the other two do:

*** This chapter element not processed by other template: ***

A Dungeon horrible, on all sides round

*** This chapter has "the" in it: ***

More unexpert, I boast not: them let those

Contrive who need, or when they need, not now.

For while they sit contriving, shall the rest,

Millions that stand in Arms, and longing wait

*** This chapter has "the" in it: ***

So thick a drop serene hath quenched their Orbs
76 CHAPTER 3 ELEMENTS AND ATTRIBUTES

XSLT offers many functions for use in predicates. The contains() function is par-
ticularly valuable because, while typical match condition tricks (like the ones we saw
earlier in this chapter) base their logic on a document’s structure, the contains()
function lets you base processing logic on a document’s contents.

3.13 ADDING NEW ATTRIBUTES
Adding an attribute to a result tree can be as simple as putting the attribute in the
start-tag of a literal result element. For example, the line start-tag in the following
template has four attributes:

<!-- xq167.xsl: converts xq168.xml into xq169.xml. -->

<xsl:template match="verse">
<line status="done" hue="{@color}" number="{amount}"

 sourceElement="src{generate-id()}"/>
</xsl:template>

This template rule will convert the following verse element

<verse color="red">

 <amount>5</amount>
</verse>

to this:

<line status="done" hue="red" number="5" sourceElement="srcb2a"/>

(The generate-id() function may create a different value with your XSLT pro-
cessor.) The template rule reads a verse element and outputs it as a line element
with four attributes, which get their values from four different sources:

• The template’s status attribute is just the hard-coded string of text “done” that
will appear just as it’s shown in the stylesheet in all line elements created from
verse elements.

• The template’s hue attribute takes its value from the color attribute value of
the source tree’s verse element.

• The template’s number attribute has the contents of the verse element’s
amount child as its value.

• The template’s sourceElement attribute makes a function call (to generate-
id(), which generates a unique ID for the source node) and adds three characters
of text before the result to create the attribute value node for the result tree.

��� The template rule uses curly braces for all but the first attribute value. These
tell the XSLT processor that their contents are expressions to be evaluated
and not plain text like the string “done” in the first attribute. If the second
attribute specification didn’t have the curly braces and said hue="@col-
or", that’s exactly what would have shown up in the output, like this:

<line status="done" hue="@color" number="5" sourceElement="srcb2a"/>
ADDING NEW ATTRIBUTES 77

This use of curly braces in attribute values is known as attribute value templates.
Instead of putting the attributes right in the element start-tags in the stylesheet,

you can specify them using the xsl:attribute element. The following template
does the same thing as the previous “verse” template, using this specialized element for
each attribute specification. (Note that the xsl:attribute elements are inside an
xsl:element element. See section 3.1, “Adding new elements to the result tree,”
page 47, for more on these.)

<!-- xq171.xsl: converts xq168.xml into xq169.xml -->
<xsl:template match="verse">

 <xsl:element name="line">
 <xsl:attribute name="status">done</xsl:attribute>

 <xsl:attribute name="hue">
 <xsl:value-of select="@color"/>

 </xsl:attribute>

 <xsl:attribute name="number">

 <xsl:value-of select="amount"/>

 </xsl:attribute>

 <xsl:attribute name="sourceElement">

 <xsl:text>src</xsl:text><xsl:value-of select="generate-id()"/>

 </xsl:attribute>

 </xsl:element>

</xsl:template>

It’s more work, so why bother? Because you have more control over how the attributes
are added to the result tree. For one thing, the xsl:attribute element lets you
add attributes selectively—in other words, only adding a certain attribute to an ele-
ment if a particular condition is true. For example, an xsl:attribute enclosed by
an xsl:if element will only be added to the result tree if the condition specified in
the xsl:if element’s test attribute is true.

Because the names of the new attributes are specified as attributes themselves here,
the xsl:attribute element offers a wider range of options for how you specify the
attribute name than can attributes added as part of literal result elements. For example,
a name attribute value of "src{generate-id()}" in an xsl:attribute ele-
ment’s start-tag tells the XSLT processor to output an attribute whose name is the
string “src” followed by the position value of the matched source tree node.

You can specify the value of these inserted attributes either as the text content of
the xsl:attribute element, such as the “done” value of the status attribute
above, or by generating text using the xsl:value-of element, as with the other
attribute values in the same example. This time, they don’t need the curly braces that
tell the XSLT processor “evaluate these and store the result on the result tree,” because
the processor already knows to do this with the value of an xsl:value-of element’s
select attribute.

To show which elements these attributes belong to, the xsl:attribute ele-
ments are inside the xsl:element element that adds a line element to the result tree
when the XSLT processor finds a verse element in the source tree.
78 CHAPTER 3 ELEMENTS AND ATTRIBUTES

������� xsl:attribute elements must always be specified in an xsl:element
before anything that specifies that element’s content—that is, before the
parts that will end up between the element’s begin- and end-tags. This con-
tent might be specified using xsl:apply-templates elements, literal
result elements and other xsl:element elements to show child elements,
xsl:value-of elements, or even plain text.

3.14 CONVERTING ATTRIBUTES TO ELEMENTS
When an XSLT processor sees an xsl:value-of element, it evaluates the expres-
sion in its select attribute and replaces the element with the result of the evalua-
tion. For example, after evaluating <xsl:value-of select="2+2"/> in a
template, the processor adds the string “4” to the corresponding place on the result
tree and in any output document created from that result tree.

This select attribute can take an XPath expression as a value, which gives you
a lot more flexibility. For example, you can refer to an attribute value of the element
serving as the context node or even of some other element. Surround one or more of
these xsl:value-of elements with an xsl:element element or with the tags of
a literal result element (that is, an element from outside the XSLT namespace that an
XSLT processor will pass to the result tree unchanged), and you’ll add a new element
to the result tree whose content was an attribute value in the source tree.

For example, the following template rule

<!-- xq173.xsl: converts xq174.xml into xq175.xml -->

<xsl:template match="winery">
 <wine>

 <xsl:value-of select="@year"/><xsl:text> </xsl:text>
 <xsl:value-of select="../@grape"/>

 </wine>
</xsl:template>

will convert the winery element in the following

<wine grape="Cabernet Sauvignon">
 <winery year="1998">Los Vascos</winery>

</wine>

into this wine element:

<wine>1998 Cabernet Sauvignon</wine>

Here’s how the template creates the new wine element:

• The “@year” value in the first xsl:value-of element’s select attribute
starts the wine literal result element with the value of the winery element’s
year attribute.

• The “../@grape” value in the second template’s select attribute selects the
value of the grape attribute in the winery element’s parent element.

• The xsl:text element inserts a space between them.
CONVERTING ATTRIBUTES TO ELEMENTS 79

A wine start- and end-tag pair around the whole thing make a well-formed XML
element for the result tree.

See section 6.11.1, “xsl:strip-space and xsl:preserve-space,” page 230 for more on
using the xsl:text element to add the single space.

3.15 GETTING ATTRIBUTE VALUES AND NAMES
Attributes are nodes of the source tree just as elements are. The most popular way to
get a particular attribute value is to use the @ prefix, an abbreviation of the
attribute:: axis specifier.

For example, to get the value of the color attribute of the para element in this
short document,

<para color="blue" flavor="mint" author="bd">

Here is a paragraph.</para>

the first xsl:value-of element in the para element’s template rule has “@color"
as the value of its select attribute:
 <xsl:template match="para">

 Color: <xsl:value-of select="@color"/>

 <!-- List the attribute names and values. -->

 <xsl:for-each select="@*">
 attribute name: <xsl:value-of select="name()"/>

 attribute value: <xsl:value-of select="."/>

 </xsl:for-each>

 </xsl:template>

The value “blue” shows up in that part (the first line) of the result:
 Color: blue

 attribute name: color
 attribute value: blue

 attribute name: flavor
 attribute value: mint

 attribute name: author
 attribute value: bd

The other result tree lines are added to the result tree by the template’s xsl:for-
each element. This instruction goes through all of the para element’s attributes,
listing the name and value of each. While the template’s first xsl:value-of ele-
ment has “@color” as the value of its select attribute to indicate that it wants the
attribute with that name, the xsl:for-each element has “@*” as its select
attribute value to show that it wants attributes of any name.

Inside the loop, the template adds four nodes to the result tree for each attribute:
• the text node “attribute name:” to label the text after it
• an xsl:value-of element with the function call name() as the value of its
select attribute. (This adds the name of the node to the result tree; in a loop
iterating through attribute nodes, it adds the attribute name.)
80 CHAPTER 3 ELEMENTS AND ATTRIBUTES

• the text node “attribute value:” to label the text after it

• an xsl:value-of element with the abbreviation “.” as the value of its
select attribute. (This XPath abbreviation for self::node() gives you the
value of the current node—in this case, the attribute value.)

The result of applying this stylesheet to the short source document shown earlier
shows each attribute’s name and value.

3.16 TESTING FOR ATTRIBUTE EXISTENCE AND FOR

SPECIFIC ATTRIBUTE VALUES
Sometimes, when an attribute is optional for a particular element, you want to test
whether the attribute was specified or not. Other times you want to check whether it
has a particular value. For example, let’s say that when we process the following docu-
ment, we’re not sure whether its para element has flavor or font attributes, and
while we know that the para element has an author attribute, we need to check
whether author has a value of “jm” or not.

<para color="blue" flavor="mint" author="jm">

Fallen cherub, to be weak is miserable</para>

The following template rule adds a short text message to the result tree for each
attribute it finds:

<!-- xq182.xsl: converts xq181.xml into xq183.xml -->

<xsl:template match="para">

 <!-- Is there a flavor attribute? -->

 <xsl:if test="@flavor">
 There is a flavor attribute

 </xsl:if>

 <!-- Is there a font attribute? -->
 <xsl:if test="@font">

 There is a font attribute
 </xsl:if>

 <!-- Does author="jm"? -->

 <xsl:if test="@author = 'jm'">
 Author equals "jm"

 </xsl:if>

</xsl:template>

The template rule has three xsl:if elements. An xsl:if element that only has a
node name as the value of its test attribute is testing whether that node exists or
not. In the example, the first xsl:if element tests whether the para element has a
flavor attribute. The para element in the example source document does, so the
string “There is a flavor attribute” shows up in the result.

 There is a flavor attribute

 Author equals "jm"
ATTRIBUTE TESTING 81

The second xsl:if element checks for a font attribute. Because the para element
doesn’t have one, the string “There is a font attribute” does not show up in the result.
The stylesheet’s third xsl:if element goes a step further than merely checking for
the existence of an attribute node: it checks whether the attribute has the specific
value “jm”. (Note how “jm” is enclosed in single quotation marks in the stylesheet
because the xsl:if element’s test attribute value is enclosed in double quotation
marks.) Because that is the attribute’s value, the string “Author equals ‘jm’ ” does show
up in the result.

For more on the xsl:if instruction, see section 5.1, “Control statements,”
page 110.

3.17 REUSING GROUPS OF ATTRIBUTES
If you need to re-use the same group of attributes in different element types in the
same result document (for example, to include revDate, author, and docID
attributes in your result document’s chapter, sidebar, and caption elements),
you can store them in an xsl:attribute-set element and then reference the col-
lection with a use-attribute-sets attribute of the xsl:element instruction.

The following shows a group of xsl:attribute elements in an
xsl:attribute-set element named “lineAttrs” and an xsl:element instruc-
tion that incorporates those attributes with a value of “lineAttrs” for its use-
attribute-sets attribute. Note the plural form of the name use-attribute-
sets—the value can list more than one attribute set, as long as spaces separate the
names, and all the names represent existing xsl:attribute-set elements.
<!-- xq185.xsl: converts xq168.xml into xq187.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:output omit-xml-declaration="yes"/>

<xsl:attribute-set name="lineAttrs">

 <xsl:attribute name="status">done</xsl:attribute>
 <xsl:attribute name="hue">

 <xsl:value-of select="@color"/>
 </xsl:attribute>

 <xsl:attribute name="number">
 <xsl:value-of select="amount"/>

 </xsl:attribute>
 <xsl:attribute name="sourceElement">

 <xsl:text>src</xsl:text><xsl:value-of select="generate-id()"/>
 </xsl:attribute>

</xsl:attribute-set>

<xsl:template match="verse">

 <xsl:element name="line" use-attribute-sets="lineAttrs">

 <!-- Add one more attribute to the ones in the "lineAttrs"
 group and override the value of another. -->

 <xsl:attribute name="author">BD</xsl:attribute>
82 CHAPTER 3 ELEMENTS AND ATTRIBUTES

 <xsl:attribute name="hue">NO COLOR</xsl:attribute>

 <xsl:apply-templates/>
 </xsl:element>

</xsl:template>
</xsl:stylesheet>

Running this with the following source document

<verse color="red">

 <amount>5</amount>
</verse>

produces this result (the generate-id() function may create a different value
with your XSLT processor):

<line status="done" hue="NO COLOR" number="5"

 sourceElement="srcb2a" author="BD">
 5

</line>

In addition to incorporating a named attribute set, the xsl:element instruction in
the preceding example has two more xsl:attribute elements that customize the
line element’s set of attributes:

• The first adds an author attribute to the result tree’s line elements. Along
with the four attributes from the xsl:attribute element, this additional
attribute makes a total of five attributes for the line elements being added to
the result tree.

• The second overrides the hue attribute value set in the lineAttrs attribute
set, because an xsl:attribute attribute setting takes precedence over an
attribute group attribute setting.

These two xsl:attribute instructions illustrate that, when you use an attribute
set, you’re not stuck with that set—you can customize the set for the element type
using it (in this case, verse) by adding new attributes or overriding some of the
attributes it declares.
REUSING GROUPS OF ATTRIBUTES 83

C H A P T E R 4

Advanced XML markup

4.1 Comments 84
4.2 Entities 87
4.3 Namespaces 92
4.4 Images, multimedia elements, and other unparsed entities 104
4.5 Processing instructions 106
4.1 COMMENTS

Comments in your output documents can provide handy information about the
source data and processes that created those documents. Comments in your input
documents may or may not be useful, but because an XSLT processor’s default behav-
ior is to ignore comments, it’s important to know which match pattern to use when
you do want to read them.

4.1.1 Outputting comments

Add comment nodes to your result tree with the xsl:comment element. Using this
element is fairly simple: put the text of your comment between its start- and end-tags.
For example, an XSLT processor that applies the following template to a poem element

<!-- xq213.xsl -->

<xsl:template match="poem">

 <html>
 <xsl:comment> Created by FabAutoDocGen release 3 </xsl:comment>

 <xsl:apply-templates/>
 </html>

</xsl:template>
84

will add this comment after the html start-tag and before its contents in the result
tree:

<!-- Created by FabAutoDocGen release 3 -->

Note the space after the xsl:comment start-tag and the one before its end-tag to
keep the actual comment being output from bumping into the hyphens that start and
end the comment.

Speaking of hyphens, a pair of hyphens within your output comment or a single
hyphen at the end of your comment, as shown in the next example, are technically errors.

<!-- xq215.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="poem">

 <html> <!-- Hyphens in xsl:comment element make it illegal. -->
 <xsl:comment> Created by FabAutoDocGen -- rel. 3 -</xsl:comment>

 <xsl:apply-templates/>
 </html>

</xsl:template>
</xsl:stylesheet>

It’s easy enough for an XSLT processor to recover from this error: it can insert a space
between two contiguous hyphens and a space after a hyphen that ends a comment,
like this, to make the comment legal:

<html>

<!-- Created by the FabAutoDocGen system - - rel. 3 - -->

While some processors may correct this for you, it’s not a good idea to take this for
granted. It’s better to specify valid comment text as the content of your stylesheet’s
xsl:comment element.

������� If an xsl:comment element is a top-level element—that is, if it’s a child
of an xsl:stylesheet element—an XSLT processor will ignore it. It
must be a child of an element that can add something to the result tree. In
the example above, the xsl:comment element is a child of an xsl:tem-
plate element.

By putting a template rule’s xsl:apply-templates or xsl:value-of ele-
ments between the xsl:comment start- and end-tags, a stylesheet can convert the
source tree content represented by these elements into an output comment. For
example, the following template rule converts a documentation element like the
ones found in W3C XML Schemas into XML 1.0 comments in the output:

<!-- xq217.xsl: converts xq218.xml into xq219.xml -->

<xsl:template match="documentation">
 <xsl:comment><xsl:apply-templates/></xsl:comment>

</xsl:template>
COMMENTS 85

It converts this

<documentation>The following is a revision.</documentation>

into this:

<!--The following is a revision.-->

4.1.2 Reading and using source tree comments

By default, an XSLT processor ignores comments in the input. However, a template
with the comment() node test as the value of its match attribute selects all the
comments in the source tree so that you can add them to the result tree. The follow-
ing template copies comments to the result tree:

<!-- xq221.xsl -->
<xsl:template match="comment()">

 <xsl:comment><xsl:value-of select="."/></xsl:comment>
</xsl:template>

��� The XML parser isn’t required to pass comments along to the applica-
tion—in this case, the XSLT processor—so if you don’t see them showing
up, try using a different XML parser with your XSLT processor.

Once you’ve read comments from the source tree, you don’t have to output them as
comments. Wrapping the comment() template’s xsl:value-of element with a
literal result element (or putting it inside an xsl:element element) lets you con-
vert comments into elements. For example, the first template in the following
stylesheet:

<!-- xq222.xsl: converts xq223.xml into xq224.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output omit-xml-declaration="yes"/>

<xsl:template match="comment()">

 <doc><xsl:value-of select="."/></doc>
 </xsl:template>

 <xsl:template match="verse">

 <p><xsl:apply-templates/></p>
 </xsl:template>

</xsl:stylesheet>

converts the comments in this document

<!-- Poem starts here. -->
<verse>Of Man's First Disobedience, and the Fruit</verse>

<!-- Poem ends here. -->

to the doc elements shown here:

<doc> Poem starts here. </doc>
<p>Of Man's First Disobedience, and the Fruit</p>

<doc> Poem ends here. </doc>
86 CHAPTER 4 ADVANCED XML MARKUP

4.2 ENTITIES

In XML, entities are named units of storage. Their names are assigned and associated
with storage units in a DTD’s entity declarations. These units may be internal enti-
ties, whose contents are specified as a string right in their declaration, or they may be
external entities, whose contents are outside the entity with the entity declaration.
Typically, this means that the external entity is a file outside of the DTD file with the
entity declaration, but we don’t say “file” in the general case because all of XML and
XSLT still work on operating systems that don’t use the concept of files.

A DTD might declare an internal entity to play the same role as a constant in a pro-
gramming language. For example, if a document has many copyright notices that refer
to the current year, declaring an entity cpdate to store the string “2001” and then put-
ting the entity reference “&cpdate;” throughout the document means updating the year
value to “2002” for the whole document will only mean changing the declaration.

Internal entities are especially popular to represent characters not available on
computer keyboards. For example, while you could insert the “ñ” character in your
document using the numeric character reference “ñ” (or the hexadecimal ver-
sion “ñ”), storing this character reference in an entity called ntilde lets you
put “España” in an XML document as “Espanña”, which is much easier to read
than “España” or “España”. (It has the added bonus of being familiar to
those who used the same entity reference in HTML—perhaps without even knowing
that it was an entity reference!)

An external entity can be a file that stores part of a DTD, which makes it an exter-
nal parameter entity, or it can store part of a document, which makes it an external
general entity. For example, the following XML document declares and references the
external general entity ext1:

<!-- xq226.xml -->
<!DOCTYPE poem [

<!ENTITY ext1 SYSTEM "lines938-939.xml">

]>

<poem>
<verse>I therefore, I alone first undertook</verse>

<verse>To wing the desolate Abyss, and spy</verse>
&ext1;

<verse>Better abode, and my afflicted Powers</verse>
<verse>To settle here on Earth or in mid-air</verse>

</poem>

An XML parser reading this document in will look for an external entity named
lines938-939.xml and report an error if it doesn’t find it. If it does find a file named
lines938-939.xml that looks like this,

<!-- xq227.xml (lines938-939.xml) -->

<verse>This new created World, whereof in Hell</verse>
<verse>Fame is not silent, here in hope to find</verse>
ENTITIES 87

the parser will pass something like the following to the application using that XML
parser (for example, an XSLT processor):

<poem>

<verse>I therefore, I alone first undertook</verse>
<verse>To wing the desolate Abyss, and spy</verse>

<verse>This new created World, whereof in Hell</verse>
<verse>Fame is not silent, here in hope to find</verse>

<verse>Better abode, and my afflicted Powers</verse>
<verse>To settle here on Earth or in mid-air</verse>

</poem>

Because an XSLT stylesheet is an XML document, you can store and reference pieces
of the stylesheet using the same technique, but you’ll find that the xsl:include
and xsl:import instructions give you more control over how your pieces fit
together. (See section 5.2, “Combining stylesheets with include and import,” on page 126.

All these categories of entities are known as “parsed” entities because an XML
parser reads them in, replaces each entity reference with the entity’s contents, and
parses them as part of the document. XML documents use unparsed entities, which
aren’t used with entity references but as the value of specially declared attributes, to
incorporate non-XML entities. (See section 4.4, “Images, multimedia elements, and
other unparsed entities,” on page 104.)

When you apply an XSLT stylesheet to a document, if entities are declared and
referenced in that document, your XSLT processor won’t even know about them. An
XSLT processor leaves the job of parsing the input document (reading it in and fig-
uring out what’s what) to an XML parser. That’s why the installation of some XSLT
processors requires you to identify the XML parser you want them to use. (Others
include an XML parser as part of their installation.) An important part of an XML
parser’s job is to resolve all entity references, so that, if the input document’s DTD
declares a cpdate entity as having the value “2001”, and the document has the line
“copyright &cpdate; all rights reserved”, the XML parser will pass along the text node
“copyright 2001 all rights reserved” to put on the XSLT source tree. Newcomers to
XSLT often ask how they can check for entity references such as “ ” or “<”
in the source tree. The answer is: you can’t. By the time the document’s content
reaches the source tree, it’s too late.

How about entities in your result tree? You can’t add entity declarations there,
because although the doctype-system attribute of XSLT's xsl:output ele-
ment can add a document type declaration to a result tree, it can’t add one with an
internal DTD subset, which is the only way to add DTD declarations to a document
entity. (See section 6.9, “Valid XML output: including DOCTYPE declarations,” on
page 225 for more on this.)

There are ways to add entity references. If you create an XML document in your
result tree, and you add references to any entities other than the five that all XML pro-
cessors are required to handle whether they’re declared or not (lt, gt, apos, quot,
88 CHAPTER 4 ADVANCED XML MARKUP

and amp), then your document must have a document type declaration that points to
a DTD with declarations for your entities. If you’re creating an HTML document,
entity declarations aren’t required. Most Web browsers understand a wide variety of
entity references for special characters such as “é” for the “é” character and
“ñ” for the “ñ” character.

Let’s look at approaches to creating an entity reference in a result tree. We’ll use the
following one-line document as a source document and try to add a text node that
includes the entity reference “ñ” for the “ñ” character:

<test>Dagon his Name, Sea Monster</test>

If the stylesheet document has the appropriate entity declaration, the XML parser
that feeds the stylesheet and source document to the XSLT processor will replace this
entity reference in the stylesheet with the replacement text declared for it. For this
stylesheet, it will replace “ñ” with the Unicode value for the “ñ” character:

<!-- xq230.xsl: converts xq229.xml into xq231.xml -->

<!DOCTYPE stylesheet [

<!ENTITY ntilde "ñ" ><!-- small n, tilde -->
]>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="test">

 <testOut>
 The Spanish word for "Spain" is "España".

 <xsl:apply-templates/>
 </testOut>

 </xsl:template>

</xsl:stylesheet>

Figure 4.1 An XSLT processor’s XML parser resolves all input document entity refer-

ences when it builds the source tree, so when the XSLT processor looks through the

source tree as it builds the result tree, it doesn’t know which entity references were ever

in the input document.
ENTITIES 89

The actual “ñ” character (and not an entity reference to it) shows up in the result:

<?xml version="1.0" encoding="utf-8"?><testOut>

 The Spanish word for "Spain" is "España".
 Dagon his Name, Sea Monster</testOut>

������� Normally, your stylesheet doesn’t need a DOCTYPE declaration, but if the
stylesheet has references to any entities besides the five predeclared ones list-
ed previously, you must declare them yourself inside a DOCTYPE decla-
ration. The XML parser that reads in the stylesheet for your XSLT
processor will replace any entity references with their entity values before
giving the stylesheet to the XSLT processor.

This is handy, but not what we’re looking for. We want to see an entity reference, and
not the referenced entity, in the result document. XSLT offers no way to tell the XML
processor not to make entity replacements. (Certain XSLT processors such as Xalan
offer this option as a nonstandard feature). However, XSLT does offer a way to turn off
its automatic “escaping” of certain characters—that is, an XSLT processor’s substitu-
tion of the entity reference “&” for ampersands and “<” for less-than charac-
ters in result tree text nodes. You can turn it off for your entire result tree with an
xsl:output instruction that has a method attribute value of “text” (see section 6.5,
“Non-XML output,” on page 202). And you can turn it off for a single xsl:text
element by setting its disable-output-escaping attribute to equal “yes.”

������� The disabling of output escaping is used too often in situations where it
shouldn’t be. In particular, it’s used to create a less-than character that starts
a tag or a declaration that could be added to a result tree with a more ap-
propriate XSLT instruction. Because it’s essentially turning off something
that the XSLT processor is supposed to do, use this sparingly.

The following version of the stylesheet resembles the previous one except for the
replacement text specified in the ntilde declaration. It’s an xsl:text instruction
with “&ntilde;” as its contents:

<!-- xq232.xsl: converts xq229.xml into xq233.xml -->

<!DOCTYPE stylesheet [
<!ENTITY ntilde

"<xsl:text
disable-output-escaping='yes'>&ntilde;</xsl:text>">

]>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:output doctype-system="testOut.dtd"/>

 <xsl:template match="test">
90 CHAPTER 4 ADVANCED XML MARKUP

 <testOut>

 The Spanish word for "Spain" is "España".
 <xsl:apply-templates/>

 </testOut>
 </xsl:template>

</xsl:stylesheet>

The XML parser that reads in the stylesheet and hands it off to the XSLT processor
will replace that “&” with a “&”, but because the xsl:text element has its
disable-output-escaping attribute set to “yes,” the XSLT processor will pass
along the “ñ” string to the result tree without trying to resolve it. (If the pro-
cessor did try to resolve the string, it would cause an error, because having “ñ”
as the replacement text for the ntilde entity would be an illegal recursive entity
declaration.) With the same test document, the new stylesheet creates this output:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE testOut SYSTEM "testOut.dtd">

<testOut>
 The Spanish word for "Spain" is "España".

 Dagon his Name, Sea Monster</testOut>

The new stylesheet has one more difference from the earlier one: it includes an
xsl:output element. This element doesn’t need a method attribute, because the
default value of “xml” is fine. The doctype-system attribute is important, because
if the result document has an “ñ” entity reference, that entity must be declared
somewhere. XSLT doesn’t offer a way to include such declarations in an internal DTD
subset of the document’s DOCTYPE declaration, although some stylesheet developers
have hacked this to add these declarations using disable-output-escaping
kludges. The best way to ensure that these declarations are properly declared is to give
the result tree a DOCTYPE declaration with a SYSTEM identifier that points to a
DTD with that declaration. The preceding example adds a SYSTEM declaration that
points to a testOut.dtd file, which should include a declaration for the ntilde entity.

This trick works for any general entity reference you want in your result tree,
whether it references an internal entity whose contents are included in the declaration
(such as the ntilde entities in the examples above) or an external entity whose con-
tents are stored in an external file such as the ext1 one at the beginning of the section.

To review, you can add any kind of entity reference you want to your result tree by

• adding an entity reference to your result tree

• declaring the entity’s contents in the stylesheet’s DOCTYPE declaration to be an
ampersand, the entity name, and a semicolon all inside of an xsl:text ele-
ment with its disable-output-escaping attribute set to “yes”
ENTITIES 91

4.3 NAMESPACES

In XML, a namespace is a collection of names used for elements and attributes. A
URI (usually, a URL) is used to identify a particular collection of names. Instead of
adding an xmlns attribute showing a full URI to every element in order to show
which namespace it comes from, you’ll find it more convenient to name a short
abbreviation when a namespace is declared and to then use that abbreviation to iden-
tify an element or attribute’s namespace.

For example, in the following document (figure 4.2), the table element explic-
itly declares that it’s from the HTML 4.0 namespace by putting the appropriate URI
in an xmlns attribute. This makes this namespace the default for everything inside
of this element as well. In other words, an XML processor will treat all of its contents
(the tr elements and their contents) as elements from the HTML namespace unless
they have namespace declarations or prefixes from other namespaces.

The author element has two attributes that reference a namespace declared in the
article element’s start-tag. It shows this by adding the “xlink” prefix declared with
the http://www.w3.org/1999/xlink namespace to those attribute names. An XLink-
aware application will find those type and href attributes and know what to do
with them.

Many simple XML applications never need to declare and use namespaces. If they
don’t, the XML processor treats all elements and attributes as being in the default
namespace. This may be the case with some of your source documents, but it’s cer-
tainly not the case with your stylesheets: the declaring and referencing of the XSLT

Figure 4.2

A document referencing two namespaces
92 CHAPTER 4 ADVANCED XML MARKUP

namespace is how we tell an XSLT processor which elements and attributes in a
stylesheet to treat as XSLT instructions. For example, the document element’s start-
tag in the following stylesheet declares a namespace for the http://www.w3.org/1999/
XSL/Transform URI and assigns the prefix xsl to represent it:

<!-- xq236.xsl: converts xq237.xml into xq238.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="xdata">

<heading>xdata</heading><xsl:text>
</xsl:text>

<text><xsl:apply-templates/></text>
</xsl:template>

</xsl:stylesheet>

When this stylesheet’s single template rule sees an xdata element in the source tree,
it adds two elements to the result tree: a heading element with the string “xdata” as
its contents and a text element with the source tree xdata element’s contents as its
contents. The template turns this

<xdata>With Opal Towers and Battlements adorned</xdata>

into this:

<heading>xdata</heading>
<text>With Opal Towers and Battlements adorned</text>

The template also adds a carriage return between the result tree’s heading and
text elements. It does so with an xsl:text element that has a carriage return as
its contents. The XSLT processor knows the difference between the text element
that has the carriage return and the text element with the xsl:apply-templates
instruction as its contents because the one with the carriage return has that xsl: pre-
fix to show that it’s part of the http://www.w3.org/1999/XSL/Transform namespace.
The second of these two text elements has no prefix, so the XSLT processor doesn’t
treat it as a special XSLT element—it’s just another literal result element.

�������	 The use of “xsl” as the prefix to identify XSLT elements is just a conven-
tion. (It’s a pretty confusing convention, considering that the XSL conven-
tion is to use fo for “formatting objects.”) In other words, XSL documents
typically don’t use “xsl” as their namespace prefix; XSLT stylesheets do. See
section 6.13, “XSL and XSLT: creating Acrobat files and other format-
ted output,” on page 247, for more on XSLT’s relationship to XSL.

The following stylesheet, which assigns and uses harpo as the prefix for the XSLT
namespace, works identically to the one above:
NAMESPACES 93

<!-- xq239.xsl: converts xq237.xml into xq238.xml -->

<harpo:stylesheet
xmlns:harpo="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<harpo:output method="xml" omit-xml-declaration="yes"/>

<harpo:template match="xdata">
<heading>xdata</heading><harpo:text>

</harpo:text>
<text><harpo:apply-templates/></text>

</harpo:template>

</harpo:stylesheet>

Some XSLT processors support special instructions known as “extensions” that are
not part of the W3C XSLT specification. To use these instructions, you declare the
namespace mentioned in that processor’s documentation and then refer to those
instructions using whatever prefix you declared for that namespace. (See section 5.5,
“Extensions to XSLT,” on page 143, for more on these.)

4.3.1 Namespaces and your result document

What if you want your result document to include elements from a specified
namespace? Simply declare and use the namespace you need in your stylesheet and
the XSLT processor will

• put that namespace declaration in the start-tag of the result document’s docu-
ment element and

• put the prefix for that namespace in the tags for any result tree elements from
that namespace

(If you want it to include elements from the http://www.w3.org/1999/XSL/Trans-
form namespace—that is, if you want your result document to be an XSLT
stylesheet—it’s a little trickier than the general case; we’ll cover that later in this chap-
ter.) For example, to convert the following HTML document to an XLink document,
the result needs an XLink namespace declaration and each of the special XLink
attributes need a prefix that references that declaration:

<html><body>

<p>The poem's author was English.</p>
</body></html>

The stylesheet declares the http://www.w3.org/1999/xlink namespace in the
xsl:stylesheet element’s start-tag along with the declaration of the http://
www.w3.org/1999/XSL/Transform namespace:

<!-- xq242.xsl: converts xq241.html into xq243.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xlink="http://www.w3.org/1999/xlink"

version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>
94 CHAPTER 4 ADVANCED XML MARKUP

<xsl:template match="a">

<author xlink:type="simple" xlink:href="{@href}">
<xsl:apply-templates/></author>

</xsl:template>

<xsl:template match="p">

<para><xsl:apply-templates/></para>
</xsl:template>

</xsl:stylesheet>

A document element’s start-tag is where you’ll usually find a namespace declaration,
and the XSLT processor passes this declaration along to the start-tag of the result doc-
ument’s document element. It also passes all references to that namespace along to
the result tree, making the result document a working XLink document:

<para xmlns:xlink="http://www.w3.org/1999/xlink">

The poem's <author xlink:type="simple" xlink:href="jmilton.html">
author</author> was English.</para>

In XSLT terms, the XSLT processor has added a namespace node to the result tree.
(Six kinds of nodes may show up in source and result trees: elements, attributes, text
nodes, processing instructions, comments, and namespace nodes.) You can prevent
this from happening with the xsl:stylesheet element’s exclude-result-
prefixes attribute. This attribute’s name can be confusing, because the namespace
prefixes will still show up in the result tree. It doesn’t mean “exclude the prefixes in the
result.” it means, “exclude the namespaces with these prefixes.”

For example, the following stylesheet looks just like the preceding one with the
addition of the attribute to tell the XSLT processor to exclude the namespace node
represented by the “xlink” prefix. You can list multiple namespace prefixes as the value
of the exclude-result-prefixes attribute, as long as they have spaces between
them and they’re all declared namespaces:

<!-- xq244.xsl: converts xq241.html into xq245.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xlink="http://www.w3.org/1999/xlink"
exclude-result-prefixes="xlink"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="a">

<author xlink:type="simple" xlink:href="{@href}">
<xsl:apply-templates/></author>

</xsl:template>

<xsl:template match="p">
<para><xsl:apply-templates/></para>

</xsl:template>

</xsl:stylesheet>
NAMESPACES 95

Processing the same source document with this stylesheet creates a similar result,
except that the document element’s start-tag doesn’t have the declaration for the
XLink namespace:

<para>

The poem's <author xlink:type="simple" xlink:href="jmilton.html">
author</author> was English.</para>

You can also assign result tree elements and attributes to specific namespaces by adding
a namespace attribute to the xsl:element instruction or to an xsl:attribute
instruction. For example, the second xsl:element instruction in the following tem-
plate and the two xsl:attribute elements inside the first xsl:element each
include a namespace attribute along with their name attributes. These identify the
two namespaces where the element and attribute names belong: the HTML and XLink
namespaces:

<!-- xq246.xsl: converts xq237.xml into xq247.xml -->

<xsl:template match="xdata">

<section>

<xsl:element name="author">

<xsl:attribute namespace="http://www.w3.org/1999/xlink"

name="type" >simple</xsl:attribute>

<xsl:attribute namespace="http://www.w3.org/1999/xlink"

name="href" >jmilton.html</xsl:attribute>

John Milton
</xsl:element>

<xsl:element name="img"

namespace="http://www.w3.org/TR/REC-html40">
<xsl:attribute name="src">milton.jpg</xsl:attribute>

</xsl:element>
<xsl:apply-templates/>

</section>

</xsl:template>

When applied to the same source document as the earlier examples, this stylesheet cre-
ates a result document that has an author element with two attributes from the
XLink namespace and an img element from the HTML namespace. The XSLT proces-
sor can make up any namespace prefixes it wants; in this case, they’re “ns0” and “ns1”:

<section>

<author xmlns:ns0="http://www.w3.org/1999/xlink"

ns0:type="simple" ns0:href="jmilton.html">

John Milton

</author>
<ns1:img xmlns:ns1="http://www.w3.org/TR/REC-html40"

src="milton.jpg"/>
With Opal Towers and Battlements adorned</section>
96 CHAPTER 4 ADVANCED XML MARKUP

To review: the XSLT processor looks through a stylesheet for elements belonging to
the XSLT namespace and executes their instructions. The processor also searches for
any elements outside that namespace (that aren't from a namespace declared for
extension elements), and it passes them along to the result with namespace declarations
if necessary. You can even assign a specific namespace for an element or attribute by
adding a namespace attribute to an xsl:element or xsl:attribute element.

If the elements from the XSLT namespace don’t get passed to the result doc-
ument, what do you do if you really want XSLT elements in your result element?
For example, what if we want to convert the following document to a working
XSLT stylesheet?

<ssheet>

<elementHandler element="para">
<p><elementContents/></p>

</elementHandler>

</ssheet>

You use the xsl:namespace-alias element. If you use another temporary
namespace (in the example below, “xslAlt”) in place of the one you really want (below,
“xsl”), xsl:namespace-alias lets you tell the XSLT processor to substitute the
one you want for the temporary one when it creates the result tree:

<!-- xq249.xsl: converts xq248.xml into xq250.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xslAlt="http://www.snee.com/xml/dummy"

version="1.0">

<xsl:namespace-alias stylesheet-prefix="xslAlt"

result-prefix="xsl"/>

<xsl:template match="elementHandler">
<xslAlt:template match="{@element}">

<xsl:apply-templates/>
</xslAlt:template>

</xsl:template>

<xsl:template match="elementContents">
<xslAlt:apply-templates/>

</xsl:template>

<xsl:template match="ssheet">
<xslAlt:stylesheet version="1.0">

<xsl:apply-templates/>
</xslAlt:stylesheet>

</xsl:template>

<!-- Just copy any other elements, attributes, etc. -->
<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
NAMESPACES 97

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

This stylesheet’s first template rule will add an xslAlt:template element to the
result tree each time it finds an elementHandler element source tree. Before this
template, however, the stylesheet’s xsl:namespace-alias instruction tells the
XSLT processor to substitute the “xsl” prefix’s namespace for the “xslAlt” prefix’s
namespace in the result document, so that the result tree has a namespace declaration
assigning “xslAlt” as a prefix for the http://www.w3.org/1999/XSL/Transform
namespace. This is the XSLT namespace, so the result document is a valid XSLT
stylesheet:

<?xml version="1.0" encoding="utf-8"?>
<xslAlt:stylesheet

xmlns:xslAlt="http://www.w3.org/1999/XSL/Transform"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xslAlt:template match="para">
<p><xslAlt:apply-templates/></p>

</xslAlt:template>

</xslAlt:stylesheet>

When applied to this source document,

<para>Fallen cherub, to be weak is miserable</para>

the stylesheet created by the transformation with the xsl:namespace-alias ele-
ment creates this result:

<?xml version="1.0" encoding="UTF-8"?>

<p>Fallen cherub, to be weak is miserable</p>

Creating XSLT instructions in your result document is only the most obvious appli-
cation of the xsl:namespace-alias element. Whenever you have elements that
you don’t want recognized as belonging to a certain namespace until later in the pro-
cess, xsl:namespace-alias can put the prefix you want on those elements. Or,
it can take them out: a result-prefix value of “#default” assigns the relevant result-tree
elements to the default namespace, which means they get no namespace prefix at all.

4.3.2 Namespaces and stylesheet logic

The preceding section shows how to control the namespaces that are declared and ref-
erenced in your result document. If your stylesheet needs to know details about the
namespaces used in your source document, and to perform tasks based on which
namespaces certain elements or attributes came from, XSLT offers a variety of ways to
find out.
98 CHAPTER 4 ADVANCED XML MARKUP

To experiment with these techniques, we’ll use the following document. It has
one title element and one verse element from the http://www.snee.com/red
namespace, two verse elements from the “http://www.snee.com/blue” namespace,
and one verse element from the default namespace:

<poem xmlns:red="http://www.snee.com/red"

xmlns:blue="http://www.snee.com/blue">

<red:title>From Book IV</red:title>

<blue:verse>The way he went, and on the Assyrian mount</blue:verse>
<red:verse>Saw him disfigured, more then could befall</red:verse>

<blue:verse>Spirit of happy sort: his gestures fierce</blue:verse>
<verse>He marked and mad demeanor, then alone</verse>

</poem>

Our first stylesheet has template rules that act on element nodes based on several con-
ditions. Each adds a text node to the result tree indicating what it found (for example,
“Found a red node:”), followed by information about the node found. Note that for
the http://www.snee.com/blue namespace, the stylesheet uses a prefix different from
the one that the preceding document uses—instead of “blue”, the stylesheet uses the
German word for “blue” (“blau”):

<!-- xq255.xsl: converts xq254.xml into xq256.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:red="http://www.snee.com/red"

xmlns:blau="http://www.snee.com/blue"
version="1.0">

<xsl:output method="text"/>

<xsl:template match="poem">

Namespace nodes:
<xsl:for-each select="namespace::*">

<xsl:value-of select="name()"/><xsl:text> </xsl:text>
</xsl:for-each>

<xsl:apply-templates/>
</xsl:template>

<xsl:template match="blau:verse">

Found a blue verse.
name <xsl:value-of select="name()"/>

local-name <xsl:value-of select="local-name()"/>
namespace-uri <xsl:value-of select="namespace-uri()"/>

contents <xsl:apply-templates/>
</xsl:template>

<xsl:template match="red:*">

Found a red node:
name <xsl:value-of select="name(.)"/>

local-name <xsl:value-of select="local-name(.)"/>
namespace-uri <xsl:value-of select="namespace-uri(.)"/>

contents <xsl:apply-templates/>
</xsl:template>
NAMESPACES 99

<xsl:template match="verse">

Found a verse element from the default namespace:
name <xsl:value-of select="name(.)"/>

local-name <xsl:value-of select="local-name(.)"/>
namespace-uri <xsl:value-of select="namespace-uri(.)"/>

contents <xsl:apply-templates/>
</xsl:template>

<xsl:template match="*"/>

</xsl:stylesheet>

Let’s first look at the result of applying this stylesheet to the document above before
we talk about how the stylesheet achieves this result:

Namespace nodes:
xml blue red

Found a red node:

name red:title
local-name title

namespace-uri http://www.snee.com/red
contents From Book IV

Found a blue verse.

name blue:verse
local-name verse

namespace-uri http://www.snee.com/blue
contents The way he went, and on the Assyrian mount

Found a red node:
name red:verse

local-name verse
namespace-uri http://www.snee.com/red

contents Saw him disfigured, more then could befall

Found a blue verse.
name blue:verse

local-name verse
namespace-uri http://www.snee.com/blue

contents Spirit of happy sort: his gestures fierce

Found a verse element from the default namespace:
name verse

local-name verse
namespace-uri

contents He marked and mad demeanor, then alone

When the first template rule finds a poem element, it lists all the namespace nodes for
that element. It does so by using an xsl:for-each instruction to count through
the names in the namespace axis with any name (“*”), adding each name to the
result tree by calling the name() function in an xsl:value-of instruction’s
select attribute. The template rule then puts a single space after each name with an
100 CHAPTER 4 ADVANCED XML MARKUP

xsl:text element so that the names don’t run together. In addition to the “blue”
and “red” namespaces declared in the poem element’s start-tag, note the “xml”
namespace that starts the list in the result. An XSLT processor assumes that this
namespace has been implicitly declared in all XML documents. (Well, it's supposed to,
according to the XPath spec, but not all processors really do make this assumption.)

The second template rule looks for verse elements in the “blau” namespace.
Remember, “blau” isn’t really the namespace name. As we can see in the
xsl:stylesheet start-tag, “blau” is the prefix assigned in the stylesheet to refer to
the namespace that’s really called http://www.snee.com/blue. The sample source doc-
ument has two verse elements from the http://www.snee.com/blue namespace, and
even though the stylesheet and source documents refer to this namespace with differ-
ent prefixes, they’re still referring to the same namespace, so the XSLT processor rec-
ognizes the verse elements and adds two “Found a blue verse” text nodes to the
result tree.

Each of these result tree sections has four lines to tell us about the element node
that the template processed:

1 The first line uses the name() function to show us the element’s full name. For
all the verse elements from the http://www.snee.com/blue namespace, this name
is “blue:verse”. (The stylesheet’s first template rule used the same function to
retrieve namespace prefix names, and not element names, because that was the
type of node being handed to the name() function inside the xsl:for-each
element that was counting through the namespace nodes.) A template rule look-
ing for “verse” elements from the http://www.snee.com/blue namespace hands
this function element nodes, not namespace nodes, so it adds the element names
to the result tree.

2 The second line uses the local-name() function to show us the local part of the
element’s name—that is, the name that identifies it within that particular
namespace. For an element with a full name of “blue:verse”, the local name is “blue”.

3 The third line uses the namespace-uri() function to get the full URI of the
element’s namespace. As we saw with the http://www.snee.com/blue namespace,
documents may assign any prefix to a namespace; it’s the corresponding URI
that really identifies the namespace. For example, you can use “xsl” or “potrze-
bie” or “blue” as the prefix for your stylesheet’s XSLT instructions, as long as the
prefix is declared with the http://www.w3.org/1999/XSL/Transform URI so that
your XSLT processor recognizes those elements as the special ones from the
XSLT namespace.

4 The fourth line shows the contents of the selected element node with an
xsl:apply-templates instruction.

The stylesheet’s third template rule looks for any element in the “red” namespace and
adds the same information to the result tree that the “blue:verse” template rule added.
NAMESPACES 101

Because the source document included both a title element and a verse element
from the http://www.snee.com/red namespace, both get a four-line report in the
result. Their corresponding element type names show up in their “name” and “local-
name” parts of the result tree. The stylesheet’s final template rule suppresses any ele-
ments not accounted for in the first three template rules.

We’ve seen how a template can select all the elements with a specific name from
a specific namespace (in the example above, the verse elements from the http://
www.snee.com/blue namespace) and how it can select all the elements, regardless of
their names, from a particular namespace (in the example, those from the http://
www.snee.com/red namespace). The next template shows how to select all the ele-
ments of a particular name regardless of their namespace: it has a match pattern for
all the verse elements from any namespace.

<!-- xq257.xsl: converts xq254.xml into xq258.txt -->

<xsl:template match="*[local-name()='verse']">

Found a verse:

name <xsl:value-of select="name()"/>
local-name <xsl:value-of select="local-name()"/>

namespace-uri <xsl:value-of select="namespace-uri()"/>
contents <xsl:apply-templates/>

</xsl:template>

Technically speaking, this match pattern is really looking for all the elements for
which the local part of their name is “verse”. It does this by looking for elements of
any name (“*”) that meet the condition in the predicate: the local-name() func-
tion must return a value of “verse”. When we apply this stylesheet to the document
used in the earlier examples, the result shows two verse elements from the “blue”
namespace, one from the “red” namespace, and one from the default namespace (that
is, one with no specific namespace assigned to it—the last verse element in the
source document):

Found a verse:

name blue:verse
local-name verse

namespace-uri http://www.snee.com/blue
contents The way he went, and on the Assyrian mount

Found a verse:
name red:verse

local-name verse
namespace-uri http://www.snee.com/red

contents Saw him disfigured, more then could befall

Found a verse:
name blue:verse

local-name verse
namespace-uri http://www.snee.com/blue

contents Spirit of happy sort: his gestures fierce
102 CHAPTER 4 ADVANCED XML MARKUP

Found a verse:

name verse
local-name verse

namespace-uri
contents He marked and mad demeanor, then alone

For a more realistic example, we’ll convert certain elements of an XLink document,
regardless of their element names, to HTML. The first template rule in the following
stylesheet applies to elements with any name (“*”) that meet both of the two condi-
tions in the predicate:

1 They must have a type attribute in the XLink namespace with a value of
“simple”.

2 They must have an href attribute in the XLink namespace. The value of this
attribute doesn’t affect whether the XSLT processor applies this template to the node.

<!-- xq259.xsl: converts xq260.xml into xq261.html -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xlink="http://www.w3.org/1999/xlink"
exclude-result-prefixes="xlink"

version="1.0">
<xsl:output method="html"/>

<xsl:template match="*[@xlink:type = 'simple' and @xlink:href]">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="recipe">

<html><body>
<xsl:apply-templates/>

</body></html>
</xsl:template>

</xsl:stylesheet>

If both of these conditions are true, the element—regardless of its element name—
gets converted to an HTML a element in the result tree with the source tree XLink
element’s href attribute value used for the HTML href attribute in the result tree
version. The template rule will do this to both the author and ingredient ele-
ments of the following document:

<recipe xmlns:xlink="http://www.w3.org/1999/xlink">

<author xlink:href="http:/www.jcookie.com"
xlink:type="simple">Joe "Cookie" Jones</author>

<ingredients>
<ingredient xlink:href="http:/www.snee.com/food/flour.html"

xlink:type="simple">flour</ingredient>
<ingredient xlink:href="http:/www.snee.com/food/sugar.html"

xlink:type="simple">sugar</ingredient>
</ingredients>

<steps/>
</recipe>
NAMESPACES 103

Because of the example’s simplicity, the result won’t look fancy in a browser, but it
does demonstrate how two different element types can both be converted to HTML
a elements with one template rule because of the namespace of their attributes:

<html>

<body>
Joe "Cookie" Jones

flour

sugar

</body>

</html>

The example also demonstrates the use of the exclude-result-prefixes
attribute in the xsl:stylesheet element to keep the original elements’ namespace
declaration and prefixes out of the result. This helps to make the result something that
any Web browser would understand.

��� XSLT’s ability to base processing logic on namespace values makes it a great
tool for developing XLink applications.

4.4 IMAGES, MULTIMEDIA ELEMENTS, AND OTHER UNPARSED ENTITIES

An XML document incorporates non-XML data such as images, sound files, and any
file formats you wish by declaring them as unparsed entities, then referencing them
from attributes declared for this purpose. (For information on the potential role of
parsed entities in XSLT transformations, see section 4.2, “Entities,” on page 87.)

The following XML document references two JPEG image files. We’ll see how an
XSLT stylesheet converts the document to an HTML file that uses img elements to
incorporate those JPEG pictures. First, let’s look more closely at what’s going on in the
XML file:

<!DOCTYPE poem [

<!ELEMENT poem (verse | picture)+>
<!ELEMENT verse (#PCDATA)>

<!ELEMENT picture EMPTY>
<!ATTLIST picture picfile ENTITY #REQUIRED>

<!NOTATION JPEG SYSTEM "Joint Photographic Experts Group">
<!ENTITY squadron SYSTEM "../pics/asquadron.jpg" NDATA JPEG>

<!ENTITY ceres SYSTEM "../pics/cerespic.jpg" NDATA JPEG>
]>

<poem>
<verse>While thus he spake, the Angelic Squadron bright</verse>

<verse>Turned fiery red, sharpening in mooned horns</verse>
<picture picfile="squadron"/>

<verse>Their Phalanx, and began to hem him round</verse>
<verse>With ported Spears, as thick as when a field</verse>

<verse>Of Ceres ripe for harvest waving bends</verse>
<picture picfile="ceres"/>

</poem>
104 CHAPTER 4 ADVANCED XML MARKUP

The document’s DTD declares an empty picture element with one attribute: pic-
file, which is declared to be of type ENTITY. This means that any value supplied
for a picture element’s picfile attribute must be a declared entity. Two such
entities are declared: squadron and ceres. Each of these two entity declarations
has a SYSTEM identifier pointing to the filename to which it refers and an NDATA
parameter to name its format: JPEG. An XML processor doesn’t know what “JPEG”
means, so the DTD includes a NOTATION declaration to formally say “here’s one of
the unparsed formats that documents conforming to this DTD can use: JPEG.”

The actual document contains two picture elements, each with a picfile
attribute naming one of the declared JPEG entities. The HTML img elements won’t
know what to do with these entity names; they need to know the name and location
of the actual JPEG files. Fortunately, XSLT offers the unparsed-entity-uri()
function to get them.

In the stylesheet used to convert the preceding XML document to HTML, the
“picture” template uses the entity name in the picfile attribute to determine the
location and name of the associated file. It does this by passing the picfile
attribute’s value as an argument to the unparsed-entity-uri() function, which
returns the URI of the unparsed entity:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<!-- xq264.xsl: converts xq263.xml into xq265.xml -->
<xsl:output method="html"/>

 <xsl:template match="poem">

 <html><body>
 <xsl:apply-templates/>

 </body></html>
 </xsl:template>

 <xsl:template match="verse">
 <p><xsl:apply-templates/></p>

 </xsl:template>

 <xsl:template match="picture">

 </xsl:template>

</xsl:stylesheet>

In the resulting HTML, the path and filenames of the JPEG files show up as the values
of the img elements’ src attributes (some XSLT processors may replace the relative
path with an absolute path):

<html>
 <body>

 <p>While thus he spake, the Angelic Squadron bright</p>

 <p>Turned fiery red, sharpening in mooned horns</p>

UNPARSED ENTITIES 105

 <p>Their Phalanx, and began to hem him round</p>

 <p>With ported Spears, as thick as when a field</p>

 <p>Of Ceres ripe for harvest waving bends</p>

 </body>

</html>

As the function name unparsed-entity-uri() tells you, this function would
return an entire URI if that had been specified as the entity’s location. For example, if
the squadron entity had been declared like this,

<!ENTITY squadron SYSTEM "http://www.snee.com/pics/asquadron.jpg"

 NDATA JPEG>

the first img element in the result would come out like this:

Putting a JPEG file’s full path and filename into the src attribute of an HTML img
element is the simplest, most obvious use of the unparsed-entity-uri() func-
tion. Unparsed entities are a part of XML because they let XML applications take
advantage of a wide variety of current and future technology. This function is guaran-
teed to play an important role in increasingly sophisticated applications as XSLT
becomes more popular.

4.5 PROCESSING INSTRUCTIONS

The most popular use of XML processing instructions is the naming of a stylesheet to
use with a particular XML or HTML document. It’s just one example of how the abil-
ity to pass information that doesn’t fit into a document’s regular structure can give
processing instructions an important role in making the different parts of an applica-
tion fit together. Being able to read and write processing instructions from an XSLT
stylesheet gives your application more power to communicate with other applications.

4.5.1 Outputting processing instructions

Add processing instruction nodes to your result tree with the xsl:processing-
instruction element. Specify the processing instruction target (a required part of
the processing instruction that is supposed to name the application for which the
processing instruction’s information is meant) in a name attribute and put any other
contents of the processing instruction between the xsl:processing-instruc-
tion element’s start- and end-tags.

������� Because an XML processing instruction ends with the two characters “?>”
the content of your processing instruction cannot include a question mark
immediately followed by a greater-than sign.

The following example
106 CHAPTER 4 ADVANCED XML MARKUP

<!-- xq270.xsl -->

<xsl:template match="article">

 <xsl:processing-instruction name="xml-stylesheet">
 <xsl:text>href="headlines.css" type="text/css"</xsl:text>

 </xsl:processing-instruction>

 <html>

 <xsl:apply-templates/>
 </html>

</xsl:template>

will add this processing instruction

<?xml-stylesheet href="headlines.css" type="text/css"?>

before the html element—that is, the html element that is added to the result tree
when an XSLT processor finds an article element in the source tree.

Note two special things about this example:

• The example would still work without the xsl:text element surrounding the
new processing instruction’s contents, but the carriage returns on either side of
that text would have been included in the output, splitting the processing
instruction over three lines. (Carriage returns next to character data get included
in the result tree; those that aren’t don’t.) A processing instruction containing
carriage returns would still be perfectly valid.

• The processing instruction added to the result tree ends with “>” and not “?>” as
do most XML processing instructions. The XSLT processor knows that the
stylesheet is creating an HTML document because the result tree’s document ele-
ment is called “html,” so it creates an HTML-style processing instruction. If the
result tree’s document element isn’t “html” (and if you don’t specifically tell it to
create HTML-style output with an “html” value for an xsl:output element’s
method attribute), then the new processing instruction will end with “?>.”

By using elements such as xsl:apply-templates and xsl:value-of between
the xsl:processing-start element’s start- and end-tags, you can insert the con-
tents and the attribute values of elements from the source tree inside a processing
instruction being added to the result tree. For example, the following template rule

<!-- xq272.xsl: converts xq273.xml into xq274.xml -->

<xsl:template match="stylesheetFile">
 <xsl:processing-instruction name="xml-stylesheet">

 href="<xsl:value-of select='.'/>"
 type="<xsl:value-of select='@type'/>"

 </xsl:processing-instruction>

</xsl:template>

will turn this stylesheetFile element

<stylesheetFile type="text/css">headlines.css</stylesheetFile>
PROCESSING INSTRUCTIONS 107

into this processing instruction:

<?xml-stylesheet

 href="headlines.css" type="text/css"
 ?>

The template uses the contents of the matched stylesheetFile element node as the
href parameter in the result tree’s processing instruction and the value of the
stylesheetFile element’s type attribute for the value of the processing instruc-
tion’s type parameter. (The template doesn’t use xsl:text elements around its con-
tent to prevent line breaks in the resulting processing instruction because it can’t. The
content includes two xsl:value-of elements, and an xsl:text element cannot
have any child elements. The resulting processing instruction is still perfectly legal XML.)

������� An xsl:processing-instruction element cannot be a top-level el-
ement. If it’s a child of an xsl:stylesheet element, an XSLT proces-
sor will ignore it. As with the example shown above, xsl:processing-
instruction should be a child of an element (in this case, xsl:tem-
plate) that can add nodes to the result tree.

4.5.2 Reading and using source tree processing instructions

An XSLT processor’s default treatment of processing instructions in the source tree is
to ignore them. Using the processing-instruction() function, your style-
sheet can find processing instructions and add them to the result tree. For example,
this template copies all processing instructions to the output with no changes:

<!-- xq276.xsl -->

<xsl:template match="processing-instruction()">

 <xsl:copy/>
</xsl:template>

XSLT also lets you select processing instructions by the value of the processing
instruction target that must begin each one. Together with XSLT’s ability to pull out
processing instruction content by using the xsl:value-of element, you can use
this method to convert processing instructions with specific processing instruction
targets into their own elements.

For example, the following XML document excerpt has two processing instructions
with different processing instruction targets: xml-stylesheet and smellPlugIn:

<?xml-stylesheet href="headlines.css" type="text/css"?>
<verse>And hazard in the Glorious Enterprise</verse>

<?smellPlugIn scent="newCar" duration="12secs"?>

In addition to converting the verse element above to a p element, the following tem-
plate rules convert the xml-stylesheet processing instruction to a stylesheet
element and the smellPlugIn processing instruction to a smellData element.
108 CHAPTER 4 ADVANCED XML MARKUP

<!-- xq278.xsl: converts xq277.xml into xq279.xml -->

<xsl:template match="processing-instruction('xml-stylesheet')">

 <stylesheet><xsl:value-of select="."/></stylesheet>
</xsl:template>

<xsl:template match="processing-instruction('smellPlugIn')">

 <smellData><xsl:value-of select="."/></smellData>
</xsl:template>

<xsl:template match="verse">
 <p><xsl:apply-templates/></p>

</xsl:template>

The preceding templates, applied to the example input, add the following to the
result tree:

<stylesheet>href="headlines.css" type="text/css"</stylesheet>

<p>And hazard in the Glorious Enterprise</p>
<smellData>scent="newCar" duration="12secs"</smellData>
PROCESSING INSTRUCTIONS 109

C H A P T E R 5

Programming issues

5.1 Control statements 110
5.2 Combining stylesheets with include

and import 126
5.3 Named templates 132
5.4 Debugging 133
5.5 Extensions to XSLT 143
5.6 Numbers and math 149
5.7 Strings 153

5.8 Variables and parameters: setting and
using 164

5.9 Declaring keys and performing
lookups 173

5.10 Finding the first, last, biggest,
and smallest 178

5.11 Using the W3C XSLT
specification 182
5.1 CONTROL STATEMENTS

Control statements are the parts of a programming language that give you greater
control over which parts of a program get executed when, and for how many times.
This usually includes “if” statements and “case” statements, which let you specify that
a series of instructions should only be carried out if a certain condition is true, and
loops, which let you specify that a series of instructions should be repeated more than
once. This section explores XSLT’s control statements.

5.1.1 Conditional statements with “If“ and “Choose“

(case) statements

Most programming languages provide some means of conditional execution. This lets
a program execute an instruction or block of instructions only if a particular condi-
tion is true. Many programming languages do so with something called “if” state-
ments; the XSLT equivalent is the xsl:if instruction.
110

Ultimately, there’s only one thing that can or can’t happen in XSLT, based on
the Boolean value of an xsl:if element’s test expression: nodes get added to the
result tree or they don’t. The addition of nodes to the result tree is the only end result
of any XSLT activity, and the xsl:if element gives you greater control over which
nodes get added than template rule match conditions can provide. For example, an
xsl:if instruction can base its behavior on document characteristics such as
attribute values and the existence (or lack) of specific elements in a document.

Many programming languages also offer something known as “case” or “switch”
statements. These list a series of conditions to check as well as the actions to perform
when finding a true condition. XSLT’s xsl:choose element lets you specify such
a series of conditions and actions in your stylesheets.

xsl:if

The xsl:if instruction adds its contents to the result tree if the expression in its test
attribute evaluates to a Boolean value of true. For example, imagine that the template
rule for the following document’s poem element must know specific details about
that element before it can add certain text nodes to the result tree.

<poem author="jm" year="1667">

<verse>Seest thou yon dreary Plain, forlorn and wild,</verse>
<verse>The seat of desolation, void of light,</verse>

<verse>Save what the glimmering of these livid flames</verse>
<verse>Casts pale and dreadful?</verse>

</poem>

The poem template rule below has six xsl:if instructions. Each adds a text node to
the result tree if the test condition is true. (These instructions could add any kind
of node—elements, attributes, or whatever you like—but the example is easier to fol-
low if we stick with simple text messages.)

<!-- xq286.xsl: converts xq285.xml into xq287.txt -->

<xsl:template match="poem">

 --- Start of "if" tests. ---

 <xsl:if test="@author='jm'">
 1. The poem's author is jm.

 </xsl:if>

 <xsl:if test="@author">

 2. The poem has an author attribute.
 </xsl:if>

 <xsl:if test="@flavor">

 3. The poem has a flavor attribute.
 </xsl:if>

 <xsl:if test="verse">
 4. The poem has at least one verse child element.

 </xsl:if>
CONTROL STATEMENTS 111

 <xsl:if test="shipDate">

 5. The poem has at least one shipDate child element.
 </xsl:if>

 <xsl:if test="count(verse) > 3">
 6. The poem has more than 3 verse child elements.

 </xsl:if>

 <xsl:if test="count(verse) < 3">
 7. The poem has less than 3 verse child elements.

 </xsl:if>

 <xsl:if test="(@author = 'bd') or (@year='1667')">
 8. Either the author is "bd" or the year is "1667".

 </xsl:if>

 <xsl:if test="@year < '1850'">

 9a. The poem is old.

 <xsl:if test="@year < '1700'">
 9b. The poem is very old.

 </xsl:if>

 <xsl:if test="@year < '1500'">
 9c. The poem is very, very old.

 </xsl:if>

 </xsl:if>

 --- End of "if" tests.

</xsl:template>

The first xsl:if element tests whether the poem element’s author attribute has a
value of “jm.”

���	 Note the use of single quotation marks around “jm” in the template to en-
close the literal string within the double quotation marks of the test at-
tribute value. You could also use the “"” or “'” entity
references (for example, test="@author="jm"") to de-
limit the string value.

When the stylesheet is applied to the source XML, the XSLT processor adds the text
node beginning with “1” to the result along with several other text nodes from the
stylesheet, depending on the Boolean values of each xsl:if instruction’s test attribute:

 --- Start of "if" tests. ---

 1. The poem's author is jm.

 2. The poem has an author attribute.

 4. The poem has at least one verse child element.

 6. The poem has more than 3 verse child elements.

 8. Either the author is "bd" or the year is "1667".

 9a. The poem is old
112 CHAPTER 5 PROGRAMMING ISSUES

 9b. The poem is very old.

 --- End of "if" tests.

Some of these expressions don’t look as obviously Boolean as @author="jm", but
the XSLT processor can still treat them as Boolean expressions. For example, the
stylesheet’s second xsl:if instruction has a test value that only says “@author”.
This tells the XSLT processor to add the xsl:if element’s contents to the result tree
if the context node (in this case, the poem element node listed as the xsl:tem-
plate element’s match attribute value) has an attribute specified with that name.
The third xsl:if element does the same for a flavor attribute. Because the poem
element has an author attribute but no flavor attribute, the result of applying
the stylesheet to the input shown includes the text node beginning with “2,” but not
the one beginning “3.”

A similar test can check whether an element has a particular child subelement.
The fourth and fifth xsl:if elements check for verse and shipDate subelements
of the poem element. The output shows that it has at least one verse subelement but
no shipDate subelements.

How many verse subelements does the poem element have? The count()
function makes it easy to find out. The sixth and seventh xsl:if elements check
whether this count is more or less than 3. The sixth is true, and its text is added to
the output, but the seventh is not. (If there were exactly three verse child elements,
neither of these conditions would be true.)

������� When you want to use the less-than symbol in an xsl:if element’s test
attribute, remember to use the entity reference “<”. The actual “<” char-
acter in the test attribute value (or in any attribute value) makes the
stylesheet an ill-formed XML document, so the XML parser will choke on
it and not pass it along to the XSLT processor.

You can use parentheses and the Boolean operators and and or to build more com-
plex Boolean expressions. For example, the eighth xsl:if element in the preceding
stylesheet adds the text node string beginning with “8” if either the author attribute
equals “bd” or the year attribute equals “1667.” Because the latter condition is true
for the sample document’s poem element, an XSLT processor will add the text. The
parentheses in the test attribute’s expression are not necessary in this case, but as
with similar expressions in other programming languages, they make it easier to see
the expression’s structure.

For more complex conditional logic, you can nest xsl:if elements inside of each
other. In the example, the xsl:if element with the line beginning “9a” contains
xsl:if elements 9b and 9c. The output shows that, because the poem element’s
year attribute has a value less than 1850, the text string beginning with “9a” gets added
to the output. Because it’s also less than 1700, the text string beginning with “9b” in
the first nested xsl:if element is also added. The date value is not less than 1500,
so the second nested xsl:if element’s text node does not get added to the output.
CONTROL STATEMENTS 113

Before getting too fancy with your xsl:if elements, note the flexibility that the
xsl:choose instruction gives you. It offers the equivalent of an “else” or “otherwise”
section, which lets you specify nodes to add to the result tree if the test conditions
aren’t true. The xsl:if element offers no equivalent of this, so programmers accus-
tomed to “if-else” constructs in other programming languages may find the
xsl:choose element better for certain situations where xsl:if may first seem like
the obvious choice.

For related information, see

• section 2.4, “Predicates,” page 43 for more on expressions that can be treated as
Boolean values.

• section 3.10, “Empty elements: creating, checking for,” page 67

xsl:choose

XSLT’s xsl:choose instruction is similar to xsl:if but with a few key differences:

• One xsl:choose element can test for more than one condition and add dif-
ferent nodes to the result tree based on which condition is true.

• An xsl:choose element can have a default template to add to the result tree if
none of the conditions are true. (Compare to xsl:if, which has no equivalent
of an “else” condition.)

• The xsl:choose element has specific subelements necessary for it to work.
You can put any well-formed elements you want inside of an xsl:if element.

When an XSLT processor sees an xsl:choose element, it checks the test
attribute value of each xsl:when element that it finds as a child of the
xsl:choose element. When it finds a true test expression, it adds that xsl:when
element’s contents to the result tree and then skips the rest of the xsl:choose ele-
ment. If it finds no xsl:when element with a true test expression, it checks for the
optional xsl:otherwise element at the end of the xsl:choose element. If it
finds one, it adds its contents to the result tree.

For example, let’s say we want a template rule to check the date of the following
poem and add a message to the result tree saying whether the poem was one of Mil-
ton’s early, middle period, or later works:

<poem author="jm" year="1667">

 <verse>Seest thou yon dreary Plain, forlorn and wild,</verse>
 <verse>The seat of desolation, void of light,</verse>

 <verse>Save what the glimmering of these livid flames</verse>
 <verse>Casts pale and dreadful?</verse>

</poem>

The XSLT processor will skip over the xsl:choose element’s first two xsl:when
elements in the following template because their test expressions are false for the year
value of “1667”. The processor will add the text “The poem is one of Milton’s later
114 CHAPTER 5 PROGRAMMING ISSUES

works” to the result tree when it finds that the condition “@year < 1668” is true.
(Note the use of “<” instead of a “<” to keep the xsl:when element well-formed.)

<!-- xq290.xsl: converts xq289.xml into xq291.txt -->

<xsl:template match="poem">

 <xsl:choose>

 <xsl:when test="@year < 1638">
 The poem is one of Milton's earlier works.

 </xsl:when>

 <xsl:when test="@year < 1650">
 The poem is from Milton's middle period.

 </xsl:when>

 <xsl:when test="@year < 1668">
 The poem is one of Milton's later works.

 </xsl:when>

 <xsl:when test="@year < 1675">

 The poem is one of Milton's last works.
 </xsl:when>

 <xsl:otherwise>

 The poem was written after Milton's death.
 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

Although the sample poem element’s year value of “1667” also makes the last
xsl:when element’s test expression (“@year < 1675”) true, the XSLT processor
will not continue checking for more true test expressions after it finds one. The
result only contains the text result node from the first xsl:when element with a true
test expression:

 The poem is one of Milton's later works.

Like xsl:if instructions, xsl:when elements can have more elaborate contents
between their start- and end-tags—for example, literal result elements, xsl:element
elements, or even xsl:if and xsl:choose elements—to add to the result tree.

5.1.2 Curly braces: when do I need them?

For some stylesheet attribute values, curly braces tell the XSLT processor to evaluate
the expression between them and to replace the curly braces and their contents with
the result of that evaluation. The following stylesheet demonstrates the effect of the
curly braces:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<!-- xq573.xsl: converts xq573.xsl into xq574.xml -->

<xsl:template match="/">
CONTROL STATEMENTS 115

<test>

<xsl:variable name="myVar">10</xsl:variable>

A. <atvtest at1="hello world"/>
B. <atvtest at1="3+2+$myVar"/>

C. <atvtest at1="{3+2+$myVar}"/>
D. <atvtest at1="u{3+2}"/>

E. <atvtest at1="yo, substring('hello world',7)"/>
F. <atvtest at1="yo, {substring('hello world',7)}"/>

</test>
</xsl:template>

</xsl:stylesheet>

Some of the example’s atvtest elements use these curly braces in their at1
attribute values, and some don’t. (This stylesheet can be applied to any XML source
document, even itself, because it adds its six literal result elements to the result tree as
soon as it sees the root of any source document and then doesn’t bother with the
source document’s other nodes.) Here is the result the stylesheet creates:

<test>

A. <atvtest at1="hello world"/>

B. <atvtest at1="3+2+$myVar"/>
C. <atvtest at1="15"/>

D. <atvtest at1="u5"/>
E. <atvtest at1="yo, substring('hello world',7)"/>

F. <atvtest at1="yo, world"/></test>

The values of the at1 attributes that have no curly braces in the stylesheet (lines A,
B, and E) look exactly the same in the result as they look in the stylesheet. For the
attribute values that do have curly braces, the XSLT processor replaces the expressions
and their curly braces with the result of evaluating those expressions. This happens
whether the curly braces surround the entire attribute value (line C) or just part of
the attribute value (lines D and F).

Sometimes the evaluation of the example’s expressions involves doing math (lines C
and D), and sometimes it means calling a function unrelated to math (the substring()
function in line F). Comparing lines B and C also shows that references to variables
inside of curly braces get converted to the value they represent, but when they have
no curly braces around them, the reference to the variable is treated as literal text.

Between the XPath and the XSLT functions available, the math you can do, and
the use of variables, attribute value templates offer many possibilities for generating
result tree attribute values.

On the other hand, you don’t need those curly braces in every attribute value that
you want the XSLT processor to evaluate. Take for example, the following stylesheet,
which can also use itself as a source tree:

<!-- xq575.xsl: converts xq575.xsl into xq576.xml -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
116 CHAPTER 5 PROGRAMMING ISSUES

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="/">

<xsl:variable name="myVar">10</xsl:variable>

<test>
A. <xsl:value-of select="3+2+$myVar"/>

B. <xsl:value-of select="substring('hello world',7)"/>
</test>

</xsl:template>

</xsl:stylesheet>

This stylesheet creates this result document:

<test>

A. 15
B. world</test>

The “3+2+$myVar” was added up to “15” and the substring() function got eval-
uated so that the substring starting at the seventh character of its first argument was
added to the result tree.

So, if you sometimes need curly braces to tell your XSLT processor to evaluate
an expression in a stylesheet attribute value and other times you don’t need them, how
do you know when the curly braces are necessary? The XSLT specification tells you
outright if each of the special XSLT stylesheet elements’ attributes is an attribute value
template, which means that curly braces and any expression between them will be
replaced by the result of evaluating that expression. Syntax summaries in the XSLT
specification show curly braces around the values of attributes treated as attribute value
templates such as the one shown for xsl:sort here:

<xsl:sort

select = string-expression
lang = { nmtoken }

data-type = { "text" | "number" | qname-but-not-ncname }
order = { "ascending" | "descending" }

case-order = { "upper-first" | "lower-first" } />

This syntax summary illustrates that you can’t use curly braces in the value of the
xsl:sort element’s select attribute, but you can for all its other attributes. The term
string-expression means that the select value could be a literal string, but it
could also be a function that returns a string like the substring() function used in
the earlier example. Similar terms you might see in these syntax summaries include
boolean-expression, node-set-expression, and number-expression.
As with string-expression, these all show places where you can put a literal value
or a function that returns one of these expressions. You don’t need curly braces to tell
the XSLT processor to evaluate these, because it will evaluate them anyway.

������� Because you can’t use curly braces in a node-set-expression, you
can’t use them in XPath expressions or match patterns.
CONTROL STATEMENTS 117

• See appendix A, “XSLT quick reference” on page 259 for more information on
which attributes can be treated as attribute value templates;

• see section 5.6, “Numbers and math,” page 149, for more on performing math
from within stylesheets, and

• section 5.7, “Strings,” page 153 for more on functions that manipulate strings.

5.1.3 “For” loops, iteration

Programming languages use loops to execute an action or series of actions multiple
times. After performing the last action of such a series, the program “loops” back up to
the first one. The program may repeat these actions a specific number of times—for
example, five times or thirty times. It may repeat the actions until a specified condition is
true—for example, until there’s no more input to read or until a prime number greater
than a million has been calculated. XSLT offers two ways to repeat a series of actions:

• The xsl:for-each instruction lets you perform the same group of instruc-
tions on a given set of nodes. The specification of those nodes can take full
advantage of the options offered by XPath’s axis specifiers, node tests, and predi-
cate conditions. In other words, for any set of a source tree’s nodes that you can
describe with an XPath expression, there’s a way to say “perform this set of actions
on these nodes.” While this provides a way to execute a set of instructions repeat-
edly, you're repeating them over a set of nodes, not for an arbitrary number of
iterations, which is what a “for” loop does in most programming languages.

• By having a named template call itself recursively with parameters, you can exe-
cute a series of instructions for a fixed number of times or until a given condition
is true. This technique comes from one of XSLT’s ancestors, the LISt Processing
Language (LISP) developed for artificial intelligence work in the 1960s. The
technique may not be familiar to programmers accustomed to the “for” and
“while” loops available in languages such as Java, C++, and Visual Basic, but it
can perform the same tasks.

Iteration across nodes with xsl:for-each

When do you need xsl:for-each? Less often than you might think. If there’s
something you need to do with (or to) a particular set of nodes, an xsl:template
template rule may be the best way to do it. Reviewing this approach will make it eas-
ier to understand what the xsl:for-each instruction can offer us.

In an xsl:template template rule, you specify a pattern in the match
attribute that describes which nodes you want the rule to act on. For example, let’s say
you want to list out the figure titles in the following document:

<chapter>

<para>Then with expanded wings he steers his flight</para>
<figure><title>"Incumbent on the Dusky Air"</title>

<graphic fileref="pic1.jpg"/></figure>
118 CHAPTER 5 PROGRAMMING ISSUES

<para>Aloft, incumbent on the dusky Air</para>

<sect1>
<para>That felt unusual weight, till on dry Land</para>

<figure><title>"He Lights"</title>
<graphic fileref="pic2.jpg"/></figure>

<para>He lights, if it were Land that ever burned</para>
<sect2>

<para>With solid, as the Lake with liquid fire</para>
<figure><title>"The Lake with Liquid Fire"</title>

<graphic fileref="pic1.jpg"/></figure>
</sect2>

</sect1>
</chapter>

The following stylesheet adds only these title elements to the result tree. It sup-
presses the para elements, which are the only other elements that have character data:

<!-- xq296.xsl: converts xq295.xml into xq297.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes" indent="no"/>

<xsl:template match="figure/title">
 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="para"/>

</xsl:stylesheet>

This stylesheet creates the following result from the document above:

"Incumbent on the Dusky Air"

"He Lights"

"The Lake with Liquid Fire"

Simple template rules aren’t always enough to perform a series of actions on a speci-
fied set of nodes. What if you want to list the figure titles at the top of the result doc-
ument and then output the rest of the source document under that list? A stylesheet
like the one above, which goes through the document adding only the figure’s title
elements to the result tree, won’t do this. The para elements need to be added as
well. Our new stylesheet needs to add all the figure titles to the result tree as soon as it
reaches the beginning of the source tree’s chapter element, then it must continue
on through the rest of the source tree, processing the remaining nodes.

The xsl:for-each instruction is great for this. The following template rule
has four children:

• a text node with the string “Pictures”

• an xsl:for-each instruction to add the figure elements’ title subele-
ments to the result tree

• a text node with the string “Chapter”
CONTROL STATEMENTS 119

• an xsl:apply-templates element to add the chapter element’s contents
to the result tree

<!-- xq298.xsl: converts xq295.xml into xq299.txt -->

<xsl:template match="chapter">

 <!-- Odd indenting to make result line up better -->
Pictures:

<xsl:for-each select="descendant::figure">

<xsl:value-of select="title"/><xsl:text>

</xsl:text>

 </xsl:for-each>

Chapter:<xsl:apply-templates/>

</xsl:template>

The xsl:for-each element’s select attribute indicates which nodes to iterate
over. The XPath expression used for this attribute value has an axis specifier of
“descendant” and a node test of “figure”. So, taken together, the expression means “all
the descendants of the chapter node (the one named in the template’s match pat-
tern) with ‘figure’ as their node name.” Here we can see a key advantage of the
descendant axis over the default child one: the descendant::figure XPath
expression gets the title element nodes from the chapter element’s child, grand-
child, and great-grandchild figure elements.

The contents of the xsl:for-each element consists of two things to add to the
result tree for each node that xsl:for-each iterates over:

• The xsl:value-of element adds the contents of each figure element’s
title child

• The xsl:text element with a single carriage return as its contents adds that
carriage return after each title value

Following is the result:

Pictures:

"Incumbent on the Dusky Air"
"He Lights"

"The Lake with Liquid Fire"

Chapter:
Then with expanded wings he steers his flight

"Incumbent on the Dusky Air"

Aloft, incumbent on the dusky Air

That felt unusual weight, till on dry Land

"He Lights"

He lights, if it were Land that ever burned

With solid, as the Lake with liquid fire

"The Lake with Liquid Fire"
120 CHAPTER 5 PROGRAMMING ISSUES

Rearranging a document’s structure as you copy the document to the result tree is one
of the most popular uses of XSLT. The xsl:for-each element is a particularly
valuable tool here because of its ability to grab a copy of a set of nodes that aren’t
located together in the source tree, perform any changes you require on those nodes,
and then put them together in the result tree wherever you like.

Another advantage of acting on a set of nodes with an xsl:for-each element
instead of with an xsl:template element lies in a limitation to template rules that
XSLT novices often don’t notice: while it may appear that you can use XPath expres-
sions in an xsl:template element’s match attribute, you’re actually limited to the
subset of XPath expressions known as patterns. In the xsl:for-each element’s
select attribute, however, you have the full power of XPath expressions available.

For example, you can’t use the ancestor axis specifier in match patterns, but you
can do so in an xsl:for-each element’s select attribute. The following template
uses the ancestor axis specifier to list the names of all a title element’s ancestors:

<!-- xq300.xsl: converts xq295.xml into xq301.txt -->

<xsl:template match="title">
 <xsl:text>title ancestors:</xsl:text>

 <xsl:for-each select="ancestor::*">
 <xsl:value-of select="name()"/>

 <!-- Output a comma if it's not the last one in
 the node set that for-each is going through. -->

 <xsl:if test="position() != last()">
 <xsl:text>,</xsl:text>

 </xsl:if>
 </xsl:for-each>

</xsl:template>

<xsl:template match="para"/>

The second template rule suppresses para elements from the result tree. The first
template’s “title ancestors:” and “,” text nodes are inside xsl:text elements to pre-
vent the adjacent carriage returns from being copied to the result. This way, each
title element’s ancestor list is on one line directly after the title introducing it.

This stylesheet outputs the following when applied to the document we saw on
page 118:
title ancestors:chapter,figure

title ancestors:chapter,sect1,figure

title ancestors:chapter,sect1,sect2,figure

Like the xsl:value-of instruction, xsl:for-each is a great way to grab a set
of nodes from the source tree while the XSLT processor is applying a template to any
other node. The xsl:value-of element has one crucial limitation that highlights
the value of xsl:for-each: if you tell xsl:value-of to get a set of nodes, it
only returns a string version of the first node in that set. If you tell xsl:for-each
to get a set of nodes, it gets the whole set. As you iterate across that set of nodes, you
CONTROL STATEMENTS 121

can do anything you want with them. (The xsl:copy-of instruction can also grab
nearly any set of nodes, but with xsl:for-each, you can do something with them
before copying them to the result tree, such as the addition of the text nodes in the
example above.)

��� The xsl:sort instruction lets you sort the node set through which your
xsl:for-each element is iterating. (See section 6.7, “Sorting,” page 215,
for more on this.)

Arbitrary repetition with named template recursion

XSLT offers no specific element for repeating a group of instructions a set number of
times or until a given condition is true. To understand why XSLT doesn’t provide a
specific element requires a little historical background.

Just as XML got its start as a simplified version of SGML, XSLT and XSL began
as simplified, XML-based versions of the stylesheet language developed for SGML
called Document Style Semantics and Specification Language (DSSSL—pronounce it
to rhyme with whistle). Like SGML, DSSSL is an ISO standard, but its actual use in
the real world has been limited.

Why didn’t DSSSL catch on? One problem was its roots in Scheme, a program-
ming language that evolved from the LISP language. As mentioned earlier, “LISP”
stands for “LISt Processing” language, but many say that it stands for “Lots of Irritat-
ing Silly Parentheses.” LISP, Scheme, and DSSSL use parentheses for nearly all their
punctuation, and the parenthesized expressions get nested at such deep levels that
expressions ending with “))))” are common in all three languages. Both data structures
and control structures are parenthesized expressions in these languages, which makes
their code difficult to follow.

XSL and XSLT remedy this by applying many of DSSSL’s principles using XML.
Expressions can be deeply nested, but instead of being nested within dozens of paren-
theses, they’re nested inside regular XML elements that have names describing their
purpose right in their tags—for example, xsl:if, xsl:number, and xsl:com-
ment. This makes XSLT stylesheets much easier to follow than DSSSL stylesheets.
XSLT still inherited a related aspect of its ancestors that some view as a blessing and
others as a curse: there’s no concept of an instruction series being executed sequentially.
(The technical term is “side effect free” language.) A stylesheet gets applied to a source
tree to create a result tree. While the structure of the result tree is important, the order
in which it’s created is irrelevant. Since you can’t have a series of instructions, you cer-
tainly don’t have a way to repeat a series of instructions.

However, this doesn’t prevent you from doing something a specific number of
times or until a given condition is true in XSLT. You just have to use the LISP/
Scheme/DSSSL technique for doing so: recursion. Using recursive named templates,
you can get the benefits of both “for” loops and “while” loops.

To demonstrate, we’ll use this simple input document:

<sample>the facile gates of hell too slightly barred</sample>
122 CHAPTER 5 PROGRAMMING ISSUES

The following template illustrates how to repeat something a specific number of
times. It has a named template called “hyphens”, that can call itself as many times as
necessary to add the specified number of hyphens to the result tree. To demonstrate
the use of this named template, the “sample” template calls the “hyphens” template
four times, asking it to add a different number of hyphens to the result tree each time.
First, the “sample” template calls the “hyphens” template with no value overriding
the howMany parameter so that we can see the template’s default behavior, and then
it calls the template three more times with the values 3, 20, and 0 to override the
parameter’s default value of 1. (If you’re not familiar with the use of named templates
with parameters that can be set by the instruction calling them, see section 5.3,
“Named templates,” page 132, and section 5.8.2, “Parameters,” page 169.)

<!-- xq304.xsl: converts xq303.xml into xq305.txt -->

<xsl:template name="hyphens">

 <xsl:param name="howMany">1</xsl:param>

 <xsl:if test="$howMany > 0">

 <!-- Add 1 hyphen to result tree. -->

 <xsl:text>-</xsl:text>

 <!-- Print remaining ($howMany - 1) hyphens. -->
 <xsl:call-template name="hyphens">

 <xsl:with-param name="howMany" select="$howMany - 1"/>
 </xsl:call-template>

 </xsl:if>
</xsl:template>

<xsl:template match="sample">

 Print 1 hyphen:
 <xsl:call-template name="hyphens"/>

 Print 3 hyphens:

 <xsl:call-template name="hyphens">
 <xsl:with-param name="howMany" select="3"/>

 </xsl:call-template>

 Print 20 hyphens:
 <xsl:call-template name="hyphens">

 <xsl:with-param name="howMany" select="20"/>
 </xsl:call-template>

 Print 0 hyphens:
 <xsl:call-template name="hyphens">

 <xsl:with-param name="howMany" select="0"/>
 </xsl:call-template>

</xsl:template>

This creates the following result:

 Print 1 hyphen:
 -
CONTROL STATEMENTS 123

 Print 3 hyphens:

 Print 20 hyphens:

 Print 0 hyphens:

The “hyphens” named template first declares the howMany parameter with an
xsl:param element that sets this parameter’s default value to 1. The rest of the tem-
plate is a single xsl:if element whose contents get added to the result tree if how-
Many is set to a value greater than zero. If howMany passes this test, a single hyphen is
added to the result tree and an xsl:call-template instruction calls the
“hyphens” named template with a value of howMany one less than its current setting.
If howMany is set to 1, xsl:call-template calls it with a value of 0, so no more
hyphens will be added to the result tree. If howMany is set to 3, the named template
will be called with a howMany value of 2 after adding the first of the 3 requested
hyphens. The process is repeated until the template is called with a value of 0.

This technique is what we mean by “recursion.” When a template calls itself, it’s
a recursive call. You don’t want the “hyphens” named template to call itself forever,
so the recursive template needs a stopping condition—in the case above, an xsl:if
element that won’t perform the recursive call unless howMany is greater than 0 (See
figure 5.1).

You must also be sure that this stopping condition will eventually be true. If the
stopping condition was “$howMany = 0”, and the recursive call subtracted 2 from the
current value of howMany before calling the “hyphens” template again, calling the
template with a value of 3 would then mean making subsequent calls with howMany
values of 1, –1, –3, –5, and so forth without ever hitting 0. The recursive calls would
never stop. (The actual outcome of such an endless loop depends on the XSLT pro-
cessor being used.)

������� The fancier the condition you use to control recursion, the more careful you
must be to make absolutely sure that the stopping condition will eventually
be true. Otherwise, the execution of your stylesheet could get stuck there.
124 CHAPTER 5 PROGRAMMING ISSUES

The preceding example simulates the “for” loops used by many other programming
languages, because the recursive template in the example performs an action a specific
number of times, with the exact number passed to it at runtime. A “while” loop typi-
cally repeats an action or actions as long as a certain condition is true. And guess

Figure 5.1 Recursion: multiple calls to the same named template
CONTROL STATEMENTS 125

what? The example above is really a “while” loop. The condition is the “$howMany
> 0” test in the named template’s xsl:if start-tag. You can put any condition
you want in there, and the template will make recursive calls to itself as long as the
condition is true.

For related information, see section 5.3, “Named templates,” page 132.

5.2 COMBINING STYLESHEETS WITH INCLUDE AND IMPORT

The xsl:include and xsl:import instructions give you ways to say “get a cer-
tain XSLT stylesheet and incorporate it into this one.” There are two situations where
these are useful:

• Large, complex stylesheets, like large complex programs, are easier to maintain
when you break them down into modules with specific roles to play. In XSLT,
the xsl:include and xsl:import instructions let you assemble the pieces.
This modular approach also makes it easier to share parts of a stylesheet with
other stylesheets that only want certain features, not the whole thing; they can
just include or import the parts they need.

• Customizing an existing stylesheet without actually editing that stylesheet is easy,
because you incorporate it and then separately override any template rules that
don’t do exactly what you want.

5.2.1 xsl:include

The xsl:include instruction is similar to the “include” instruction available in
several programming languages. The XSLT processor replaces this instruction with
the contents of the stylesheet named in its href attribute. For example, the following
makehtml.xsl stylesheet names the inlines.xsl stylesheet in order to incor-
porate that stylesheet:

<!-- xq191.xsl (makehtml.xsl) -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:include href="inlines.xsl"/>

 <xsl:template match="chapter">
 <html><xsl:apply-templates/></html>

 </xsl:template>

 <xsl:template match="para">
 <p><xsl:apply-templates/></p>

 </xsl:template>

 <xsl:template match="chapter/title">

 <h1><xsl:apply-templates/></h1>
 </xsl:template>

</xsl:stylesheet>

If inlines.xsl looks like this,
126 CHAPTER 5 PROGRAMMING ISSUES

<!-- xq192.xsl (inlines.xsl) -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="emphasis">

 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="literal">

 <tt><xsl:apply-templates/></tt>

 </xsl:template>

</xsl:stylesheet>

the XSLT processor will treat makehtml.xsl as if it looked like this:
<!-- xq193.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:template match="emphasis">
 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="literal">

 <tt><xsl:apply-templates/></tt>

 </xsl:template>

 <xsl:template match="chapter">

 <html><xsl:apply-templates/></html>
 </xsl:template>

 <xsl:template match="para">

 <p><xsl:apply-templates/></p>
 </xsl:template>

 <xsl:template match="chapter/title">
 <h1><xsl:apply-templates/></h1>

 </xsl:template>

</xsl:stylesheet>

The complete inlines.xsl stylesheet didn’t get inserted; its contents did. In other
words, everything between its xsl:stylesheet tags (the stylesheet’s “emphasis”
and “literal” template rules) was inserted where the makehtml.xsl stylesheet
had its xsl:include instruction.

The included stylesheet must still be a complete stylesheet. Unlike the “include”
mechanisms offered by some programming languages, the part you’re including can’t
just be a piece of something—it must be a complete stylesheet. (If you really do want
to incorporate a fragment of a stylesheet into another one, you can use XML general
entities, because, after all, XSLT stylesheets are XML documents. See section 4.2,
“Entities,” page 87, for more on these.)
COMBINING STYLESHEETS WITH INCLUDE AND IMPORT 127

An included stylesheet may in turn include other stylesheets, and, they too, may
include other stylesheets. There’s no limit to the levels of inclusion that you can use,
although the more you add, the more complexity you have to keep track of.

������� If inclusion levels lead to a file including itself, it’s an error.

The xsl:include element can go anywhere you want in a stylesheet, as long as it’s
a top-level element—that is, a child of the xsl:stylesheet element that makes
up the main body of the stylesheet. Putting an xsl:include instruction inside
another element, such as an xsl:template template rule, wouldn’t make sense,
anyway. There would be no point to inserting another stylesheet’s complete contents
inside of a template rule.

The preceding example is fairly simple. A large, complex stylesheet like the one
that turns DocBook files into HTML uses xsl:include on a larger scale. Of the
sixty-two XSLT instructions in version 1.2’s main docbook.xsl file, thirty-eight of
them are xsl:include instructions that incorporate components such as divi-
sion.xsl and titlepage.xsl.

���	 Using xsl:include doesn’t change XSLT’s attitude about multiple tem-
plate rules that apply to the same node. If the XSLT processor can’t find a
more specific and therefore more appropriate template for a particular
source tree node, it’s an error. Using xsl:include does increase the
chance of this error happening, especially if you include stylesheets that in-
clude other stylesheets, because it’s harder to keep track of the full collection
of template rules being grouped together.

5.2.2 xsl:import

The xsl:import instruction is similar to xsl:include except that instructions
in the imported stylesheet can be overridden by instructions in the importing
stylesheet and in any included stylesheet. For example, the following makehtml2.xsl
stylesheet tells the XSLT processor to import the inlines.xsl stylesheet. The syntax is
nearly identical to the use of xsl:include—you name the imported stylesheet
with the href attribute:

<!-- xq195.xsl (makehtml2.xsl) -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:import href="inlines.xsl"/>

 <xsl:template match="chapter">
 <html><xsl:apply-templates/></html>

 </xsl:template>

 <xsl:template match="para">

 <p><xsl:apply-templates/></p>
 </xsl:template>

 <xsl:template match="chapter/title">
128 CHAPTER 5 PROGRAMMING ISSUES

 <h1><xsl:apply-templates/></h1>

 </xsl:template>

 <xsl:template match="emphasis">

 <i><xsl:apply-templates/></i>
 </xsl:template>

</xsl:stylesheet>

If inlines.xsl looks like this,

<!-- xq196.xsl (inlines.xsl) -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="emphasis">

 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="literal">

 <tt><xsl:apply-templates/></tt>
 </xsl:template>

</xsl:stylesheet>

the XSLT processor will treat makehtml2.xsl as if it looked like this:

<!-- xq197.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:template match="emphasis">

 <i><xsl:apply-templates/></i>

 </xsl:template>

 <xsl:template match="literal">

 <tt><xsl:apply-templates/></tt>

 </xsl:template>

 <xsl:template match="chapter">

 <html><xsl:apply-templates/></html>
 </xsl:template>

 <xsl:template match="para">

 <p><xsl:apply-templates/></p>
 </xsl:template>

 <xsl:template match="chapter/title">
 <h1><xsl:apply-templates/></h1>

 </xsl:template>

</xsl:stylesheet>

The inlines.xsl stylesheet’s “literal” template rule was added to the normalized
makehtml2.xsl stylesheet, but the same stylesheet’s “emphasis” template rule was
ignored. Both makehtml2.xsl and inlines.xsl have template rules with a match pattern
COMBINING STYLESHEETS WITH INCLUDE AND IMPORT 129

of “emphasis”, and because inlines.xsl was imported and not included, an XSLT pro-
cessor will use the “emphasis” template rule in makehtml2.xsl and not the one in
inlines.xsl. The XSLT processor will add emphasis element nodes to the result tree,
surrounded by the i start- and end-tags shown in makehtml2.xsl and not by the b
tags in the imported “emphasis” template rule in inlines.xsl.

�������	 If the example above had used xsl:include instead of xsl:import, the
presence of two xsl:template elements with a match pattern of “empha-
sis” would have been an error.

As with inclusion, there’s no limit to the levels of importing you may use. Your
imported stylesheets may import other stylesheets, which may import a fourth level
of stylesheets, and so on—as long as no file ultimately tries to include itself.

Any xsl:import element must come before any other elements from the
XSLT namespace in a stylesheet. This way, the XSLT processor knows that, when it
finds a template rule with the same match pattern as one in an imported template rule,
it can forget about the imported one and use the most recently found one.

For a more industrial-strength demonstration of the difference between
xsl:include and xsl:import, here’s a real-life example—the stylesheet I use
to create HTML versions of this book when I want a nicely formatted hard copy to
proofread. Because I’m using the DocBook DTD, I use Norm Walsh’s DocBook
stylesheets (http://www.nwalsh.com/docbook/xsl/), but I wanted to make changes to
my own copy of the stylesheets. For example, Norm’s stylesheets italicize all empha-
sis elements, but I want emphasized text within literallayout elements to be
bolded and not italicized so that readers can more easily see the important parts of the
book’s sample stylesheets and XML documents. (The previous sample stylesheets all
include sections tagged as emphasis elements.) To make these changes, I edited the
files included as part of Norm’s stylesheet and added a comment with my name in
them so that I could locate these changes if I ever had to make them again to a newer
version of the stylesheet.

Since I sometimes write using a notebook computer running Linux and some-
times on a desktop computer running Windows, I had to remember which stylesheet
files I edited and then copy them to the other computer. I just zipped up all the
stylesheet files and unzipped them on the other machine. While this is a simple pro-
cedure, it still leaves too much room for error, and the more changes I made, the more
trouble it would be to upgrade to a newer version of the DocBook stylesheets.

By using xsl:import and xsl:include, most of these problems go away.
Here’s the complete main stylesheet that I use when I want to create an HTML version
of this book now:

<!-- xq198.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:import href="/usr/local/lib/xml/xsl/docbook/html/docbook.xsl"/>
130 CHAPTER 5 PROGRAMMING ISSUES

 <xsl:include href="dbMods.xsl"/>

</xsl:stylesheet>

All this stylesheet does is import the main DocBook stylesheet file (a stylesheet that, as
I mentioned, includes many component files) and then include a stylesheet that I
wrote called dbMods.xsl. Now, when I want to change something in my copy of the
DocBook stylesheet, I copy the appropriate xsl:template element from the source
file in the /usr/local/lib/xml/xsl/docbook/html/ directory to my dbMods.xsl stylesheet
and make my changes there. Here are two edited xsl:template elements:

<!-- xq199.xsl (dbMods.xml excerpt) -->

<xsl:template match="literallayout/emphasis">
 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="ulink">
 <a>

 <xsl:attribute name="href">
 <xsl:value-of select="@url"/>

 </xsl:attribute>
 <!-- bd added following line -->

 <tt><xsl:value-of select="@url"/></tt>
 <xsl:apply-templates/>

</xsl:template>

The first adds b tags around any emphasis element that is a child of a literal-
layout element. When you download Norm’s DocBook stylesheet, it contains a
template rule with a pattern of “emphasis” that adds i tags around emphasis ele-
ments. Because the dbMods.xsl “literallayout/emphasis” template is more specific
than that (it doesn’t match all emphasis nodes, but only the ones that are children
of literallayout elements), an XSLT processor will use that template for those
emphasis elements.

The second template above overrides one in the imported DocBook stylesheet.
The regular DocBook version of the template for the ulink element type adds an a
element that uses the source tree ulink element’s url attribute as its href attribute
value. However, it doesn’t add any contents between the result tree’s a tags, and I
wanted the url value to show up there, so I added the line that puts the value between
tt (“teletype”) tags for the HTML result tree version. The comment about adding
that line helps me to remember the difference between the original template and my
altered version.

My dbMods.xsl file has many more template rules that I copied from the original
DocBook stylesheet files and then revised. Taking these revisions from my Linux
notebook to my Windows desktop machine is easy: I just bring the dbMods.xsl file.
(The actual stylesheet file that includes docbook.xsl and imports dbMods.xsl is
slightly different on the Windows machine from the one you see above because doc-
COMBINING STYLESHEETS WITH INCLUDE AND IMPORT 131

book.xsl is not in a directory named /usr/local/lib/xml/xsl/docbook/html/ on the
Windows machine.)

When a new version of the DocBook stylesheet comes out, I just install it into a
new directory, edit the value of the href attribute in my xsl:import element to
point at the new version’s docbook.xsl file, and I’m all set.

5.3 NAMED TEMPLATES

Most xsl:template elements get applied to nodes because their match attribute
names a certain kind of node. An XSLT processor that finds one of those nodes
applies a particular template to it if no other template applies more directly to that
node. If an xsl:template element has a name attribute, you can use this name to
call the template whenever you want instead of waiting for the XSLT processor to
decide that it’s the most appropriate template to apply to a particular node. In prac-
tice, few xsl:template elements have both a match and name attribute. Most
templates are designed to use one or the other.

How would you use a template that only had a name attribute? Imagine that
we’re converting the following to HTML, and we want to bold the result tree version
of the winery and product elements.
<wine grape="Cabernet">

 <winery>Duckpond</winery>
 <product>Merit Selection</product>

 <year>1996</year>
 <price>11.99</price>

</wine>

The first xsl:template element in the following stylesheet has no match
attribute, so the XSLT processor will never apply that template to any node unless it’s
explicitly told to do so. The second and third templates do exactly that by using the
xsl:call-template element.

<!-- xq202.xsl: converts xq201.xml into xq203.xml -->

<xsl:template name="boldIt">
 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="winery">
 <p><xsl:call-template name="boldIt"/></p>

</xsl:template>

<xsl:template match="product">
 <p><xsl:call-template name="boldIt"/></p>

</xsl:template>

<xsl:template match="year | price">

 <p><xsl:apply-templates/></p>
</xsl:template>

With the sample document above, the stylesheet gives us this result:
132 CHAPTER 5 PROGRAMMING ISSUES

 <p>Duckpond</p>

 <p>Merit Selection</p>
 <p>1996</p>

 <p>11.99</p>

(Keep in mind that there are more efficient ways to bold this source document’s
winery and product elements. The above is just a simple demonstration of how
named templates work.) The content of both the “winery” and “product” template
rules is a p element with an xsl:call-templates element inside it. The
xsl:call-template elements’ required name attribute identifies the template to
call: the “boldIt” template defined above them.

���	 This difference between letting the XSLT processor call templates as need-
ed and explicitly calling them with the xsl:call-template instruction
is viewed by XSLT developers as a philosophical difference in the approach
to stylesheet structure. The former is known as the “push” approach be-
cause the XSLT processor pushes the source tree’s nodes through the
stylesheet; the latter is called the “pull” approach because the stylesheet
pulls the source tree nodes as needed.

Because named templates can store a collection of code that you can use from various
points in the stylesheet (even from inside other named templates), they can take the
role of subroutines or functions used by many other programming languages. When
you declare a parameter in a named template with the xsl:param element, the call-
ing template can pass a new value for the parameter by using the xsl:with-param
instruction, making the named template more versatile. (See section 5.8.2, “Parame-
ters,” page 169, for more on passing parameters to named templates.)

This ability to function as subroutines which accept passed parameters makes
named templates useful as building blocks in large, complex stylesheets. Many large
stylesheets have a library of named templates that call each other. In fact, a named tem-
plate can even call itself. This plays a key role in the recursion that stands in for the
“for” and “while” loops found in many other programming languages. (See “Arbitrary
repetition with named template recursion,” on page 122 for more on this.)

5.4 DEBUGGING

When your stylesheet doesn’t do exactly what you want it to, and you don’t know
why, what resources are available to figure it out? In other words, how do you debug a
buggy stylesheet?

For now, I know of no XSLT equivalent to the kind of integrated debugger
commonly used with C++, Java, and Visual Basic development. These typically let
you pause the execution of a program to look at the values of specific variables at
the stopping point as well as the steps that lead to that point. Still, XSLT coding
tricks and features of certain processors do exist that help to do what these integrated
DEBUGGING 133

debuggers do: let you know what’s really going on when a stylesheet doesn’t behave
the way you expected.

The techniques in this chapter are grouped by the categories of XSLT areas that
can cause confusion. (For a discussion of one particularly confusing aspect of XSLT,
see section 6.11, “Whitespace: preserving and controlling,” page 229.)

5.4.1 Runtime messages, aborting processor execution

The xsl:message instruction is supposed to send a message to somewhere other
than the result tree. Exactly where depends upon the processor. A command line pro-
cessor typically displays the message on the screen, even if the XSLT processor’s out-
put is been redirected to a file.

�������	 Some processors such as the msxml3.dll version of Microsoft’s XML/
XSLT processor don’t do anything with the xsl:message elements, so
check the documentation of your processor to see what to expect.

Like the most primitive method of debugging in any language (that is, a lot of extra
“print” statements outputting variable names and values during execution), the
xsl:message instruction can be used to give some insight into the inner workings
of your stylesheet.

For example, let’s look at a stylesheet that converts this wine element to HTML:

<wine grape="Cabernet">

<winery>Duckpond</winery>
<product>Merit Selection</product>

<year>1996</year>
<price>11.99</price>

</wine>

The stylesheet has an xsl:message element inside an xsl:if element that only
lets the xsl:message instruction do its job if the bodyTextSize parameter is set
to something other than the default value. (See section 5.1.1, “Conditional state-
ments with ‘If ’ and ‘Choose’ (case) statements,” page 110, and section 5.8.2, “Param-
eters,” page 169, if you’re unfamiliar with these.)

<!-- xq578.xsl: converts xq580.xml into xq583.html. -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="html"/>

<xsl:param name="bodyTextSize">10pt</xsl:param>

<xsl:template match="/">
<xsl:if test="$bodyTextSize != '10pt'">

<xsl:message>bodyTextSize default value overridden

with value of <xsl:value-of select="$bodyTextSize"/>.

</xsl:message>

</xsl:if>

<xsl:apply-templates/>

</xsl:template>
134 CHAPTER 5 PROGRAMMING ISSUES

<xsl:template match="winery">

<xsl:apply-templates/>
<xsl:text> </xsl:text>

<xsl:value-of select="../@grape"/>

</xsl:template>

<xsl:template match="product">

<i>
<xsl:apply-templates/></i>

</xsl:template>

<xsl:template match="year | price">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

The following example shows this stylesheet being run with the wine document
above using the Sablotron XSLT processor. The stylesheet includes an xsl:param
element named bodyTextSize that gets overridden at the command line with a
value of “8pt”.

C:\dat>sabcmd xq578.xsl xq580.xml $bodyTextSize=8pt > xq583.html

Warning [code:460] [URI:file://C:/dat/xq578.xsl] [line:11]

[node:element '<xsl:message>']
xsl:message (bodyTextSize default value overridden

with value of 8pt.

)

Because the bodyTextSize value is not “10pt” for this run of the stylesheet, the
xsl:if instruction’s test is true, so its contents gets evaluated: An xsl:message
instruction sends the user a message about the default bodyTextSize value being
overridden. Although the command line redirects the XSLT processor’s output to a
file called xq583.html, the message still appears on the screen. (Sablotron happens to
enclose it in parentheses after some introductory text. Other processors may handle it
differently.) The xq583.html file was created without the message in it:

Duckpond Cabernet

<i>Merit Selection</i>

1996

11.99

The insertion of a parameter value (“8pt”) in the text output by the xsl:message
instruction illustrates how handy this element can be for reporting on the state of the
system as the processor applies the stylesheet.

The xsl:message instruction’s terminate attribute lets the stylesheet abort
the execution of the processor. Its default value is “no”; the following stylesheet sets it
to “yes”. Except for the xsl:if instruction’s test condition and the xsl:message
element inside that xsl:if element, the stylesheet is identical to the previous one:
DEBUGGING 135

<!-- xq581.xsl: converts xq580.xml. -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="html"/>

<xsl:param name="bodyTextSize">10pt</xsl:param>

<xsl:template match="/">
<xsl:if test="not(contains($bodyTextSize,'pt'))">

<xsl:message terminate="yes">bodyTextSize must be specified
in points (pt).</xsl:message>

</xsl:if>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="winery">

<xsl:apply-templates/>
<xsl:text> </xsl:text>

<xsl:value-of select="../@grape"/>

</xsl:template>

<xsl:template match="product">

<i>
<xsl:apply-templates/></i>

</xsl:template>

<xsl:template match="year | price">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

The test condition in this stylesheet’s xsl:if instruction uses the not() and
contains() functions to check whether the value of bodyTextSize is missing
the string “pt”. If so, the message about the need to specify bodyTextSize in
points is output, and because of the terminate value of “yes” in the xsl:mes-
sage element, the XSLT processor halts after outputting the message. (The
xq585.html file created by this command line is 0 bytes.)

C:\dat>sabcmd xq581.xsl xq580.xml $bodyTextSize=2feet > xq585.xml
Error [code:255] [URI:file://C:/dat/xq581.xsl] [line:11]

[node:element '<xsl:message>']
xsl:message (bodyTextSize must be specified

in points (pt).) - terminating

Despite XSLT’s lack of interactivity, this ability to output messages about the state of
the stylesheet’s execution and to even halt that execution gives you a tool for checking
what’s going on under the hood when the results aren’t what you expected. It also lets
you make your stylesheets more bulletproof, because an application that can check
whether something went wrong (especially something with the data) and then deliver
a sensible message to the user about the problem is a much more robust application.
136 CHAPTER 5 PROGRAMMING ISSUES

5.4.2 Keeping track of your elements

As the size and complexity of your source documents and stylesheets get larger, you
have more to keep track of and more potential for losing track of something. One
technique for troubleshooting is to make sure that every element type is accounted for
in the stylesheet by never relying on the default template rules for processing elements.

We’ll use the following document as a sample source document to demonstrate
the identification of elements that a stylesheet might miss. Imagine that its chapter
and appendix elements are much, much bigger and that it has many more than
those shown here:

<book>
<chapter><title>From Book I</title>

<para>Then with expanded wings he steers his flight</para>
<para>Aloft, incumbent on the dusky Air</para>

</chapter>

<chapter><title>More From Book I</title>
<para>For who can yet believe, though after loss</para>

<para>That all these puissant Leginos, whose exile</para>
</chapter>

<afterword>
<para>That was some poem, huh?</para>

</afterword>

<appendix><title>The Author</title>
<para>John Milton was born in London in 1608.</para>

<para>He died in 1674.</para>
</appendix>

<appendix><title>Glossary</title>

<para>puissant</para>
<para>Leginos</para>

</appendix>

</book>

The following stylesheet converts this document to an HTML file. Its first template
rule covers all element types needing no special handling, sending their contents to
the result tree. In other words, this template rule makes explicit what the default
XSLT element handling template rule makes implicit:

<!-- xq587.xsl: converts xq586.xml into xq588.html -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="html"/>

<xsl:template match="chapter | appendix | afterword">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="*">

<h1><xsl:value-of select="name()"/> ELEMENT UNACCOUNTED

FOR BY STYLESHEET: <xsl:apply-templates/></h1>
DEBUGGING 137

</xsl:template>

<xsl:template match="book">
<html><body><xsl:apply-templates/></body></html>

</xsl:template>

<xsl:template match="title">
<h1><xsl:apply-templates/></h1>

</xsl:template>

<xsl:template match="chapter/para">
<p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match="appendix/para">

<p><xsl:apply-templates/></p>
</xsl:template>

</xsl:stylesheet>

The second template rule overrides the default element handling rule by specifying
“*” as its match condition. This template rule’s job is to draw attention to any ele-
ments not addressed by any other template rules in the stylesheet. After an
xsl:value-of instruction to add the stray element’s name to the result tree, the
template has a message to add to the result tree about why that template was called.
The message is in all capital letters, and the whole thing is enclosed by an h1 element
to really draw attention to the problem. (You wouldn’t want a production version of
your stylesheet creating such output. The xsl:message instruction described in
the previous section is a better way to draw attention to something like this.) Run-
ning this stylesheet against the sample input shows that a para element exists that
has no template with which to address it:
<html><body>

<h1>From Book I</h1>
<p>Then with expanded wings he steers his flight</

font></p>
<p>Aloft, incumbent on the dusky Air</p>

<h1>More From Book I</h1>

<p>For who can yet believe, though after loss</p>
<p>That all these puissant Leginos, whose exile</

p>

<h1>para ELEMENT UNACCOUNTED
FOR BY STYLESHEET: That was some poem, huh?</h1>

<h1>The Author</h1>
<p>John Milton was born in London in 1608.</p>

<p>He died in 1674.</p>

<h1>Glossary</h1>
<p>puissant</p>

<p>Leginos</p>

</body></html>
138 CHAPTER 5 PROGRAMMING ISSUES

Where was this para element? A quick glance at the source document would show
that it was in the afterword element, but remember that we’re pretending that this
sample source document has many huge chapters and appendixes—it’s too big to
quickly glance through. So how do we find the para element if we can’t glance
through the document? We know from looking at the stylesheet that it’s not in a
chapter element and it’s not in an appendix element, or the catch-all template
rule wouldn’t have caught it. So how can we find out this stray para element’s ances-
try? We can do it by listing out its ancestors.

The following template rule, when added to the previous stylesheet, lists the
names of all the element types enclosing any para elements not caught by more spe-
cific template rules:

<!-- xq589.xsl: converts xq586.xml into xq590.html -->
<xsl:template match="para">

<h1>Unaccounted for para element</h1>
<h2>Ancestors</h2>

<xsl:for-each select="ancestor::*">

<xsl:value-of select="name()"/>

<xsl:if test="position() != last()">

<xsl:text>, </xsl:text>

</xsl:if>

</xsl:for-each>

<h2>Content</h2>
<xsl:apply-templates/>

</xsl:template>

Along with the para elements contents (under the h2 element at the end) and head-
ers for the contents and ancestor list, this template has an xsl:for-each instruc-
tion that lists the names of all the nodes in the ancestor axis of the para element.
(The template performs another nice trick along the way: instead of adding a comma
after every element type name in the list, it adds commas after every one but the last
one. The “position() != last()” condition prevents the last ancestor’s name from get-
ting the xsl:text node with the comma after it.) The result shows that the para
element’s ancestors are book and afterword elements.

<html><body>
<h1>From Book I</h1>

<p>Then with expanded wings he steers his flight</
font></p>

<p>Aloft, incumbent on the dusky Air</p>

<h1>More From Book I</h1>

<p>For who can yet believe, though after loss</p>
<p>That all these puissant Leginos, whose exile</

p>

<h1>Unaccounted for para element</h1>

<h2>Ancestors</h2>

book, afterword
<h2>Content</h2>
DEBUGGING 139

That was some poem, huh?

<h1>The Author</h1>
<p>John Milton was born in London in 1608.</p>

<p>He died in 1674.</p>

<h1>Glossary</h1>
<p>puissant</p>

<p>Leginos</p>

</body></html>

�������	 The xsl:apply-templates instruction after the <h2>Content</h2>
part might add too much text if you use this template rule to catch large
elements, so save it for elements whose content you know will be a reason-
able length.

With a more complex document, the ancestor list would be longer, and this tem-
plate’s usefulness would be more apparent. As with many debugging techniques, this
is hardly worth the trouble when you can read through your entire program and
input in a minute or two, but the larger your project, the more you’ll appreciate this
automated way to zero in on elements not caught by your stylesheet.

5.4.3 Tracing a processor’s steps

The XSLT specification doesn’t require XSLT processors to offer any features that let
you trace their progress as they apply a stylesheet to a document, but many processors
include these features anyway. When you release software whose job is to conform to
a public standard (that is, to perform all the same tasks as other software in the same
category), you want to offer something to get people to choose your software over the
competition’s. Debugging features are an obvious choice.

These features can give you so much information about the XSLT processor’s
progress that it’s easiest to demonstrate them with a simple stylesheet and source doc-
ument. We’ll apply this stylesheet

<!-- xq594.xsl: converts xq595.xml into xq597.html -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="html"/>

<xsl:template match="story">

<html><body>
<xsl:apply-templates/></body></html>

</xsl:template>

<xsl:template match="title">
<h1><xsl:apply-templates/></h1>

</xsl:template>

<xsl:template match="para">

<p><xsl:apply-templates/></p>
</xsl:template>

</xsl:stylesheet>
140 CHAPTER 5 PROGRAMMING ISSUES

to this document

<story><title>Chapter 1</title>

<para>A Dungeon horrible, on all sides round</para>
<para>More unexpert, I boast not: them let those</para>

</story>

to create this result document:

<html>

<body>
<h1>Chapter 1</h1>

<p>A Dungeon horrible, on all sides round</p>

<p>More unexpert, I boast not: them let those</p>

</body>
</html>

To get a sample of what kind of extra debugging information XSLT processors may
make available, this section looks at two processors: Xalan and Saxon. By the time
you read this, Xalan and Saxon may have more debugging features than those listed
here. Check the “command line help” section of each entry in appendix B, which
describes how to tell each processor, whether Saxon, Xalan, or another, to list its com-
mand line options. This is a good place to see what’s available for any processors you
have installed.

Xalan’s Java and C++ XSLT processors offer several command line switches to
request information about the processor’s activity. The -TT switch tells the processor
to trace the templates as they are being called. For the preceding stylesheet and source
document, the following is the trace output:

Line #0, Column #0: xsl:template match="/"

Line #7, Column #31: xsl:template match="story"
Line #12, Column #31: xsl:template match="title"

Line #16, Column #30: xsl:template match="para"
Line #16, Column #30: xsl:template match="para"

The trace output lists the name of each template and its location in the stylesheet as it
gets called. As the first line shows, the output even lists default templates when they
are called. (The stylesheet has no “/” template rule, so “Line #0, Column #0” refers to
a default XSLT template.)

Xalan’s -TG switch traces each event, generated by the reading of the input to
which the processor may react:

STARTDOCUMENT

STARTELEMENT: html

STARTELEMENT: body
STARTELEMENT: h1

CHARACTERS: Chapter 1
ENDELEMENT: h1

IGNORABLEWHITESPACE
DEBUGGING 141

STARTELEMENT: p

CHARACTERS: A Dungeon horrible, on all sides round
ENDELEMENT: p

IGNORABLEWHITESPACE
STARTELEMENT: p

CHARACTERS: More unexpert, I boast not: them let those
ENDELEMENT: p

IGNORABLEWHITESPACE
ENDELEMENT: body

ENDELEMENT: html

This is a near-complete listing of exactly what the processor sees in the source docu-
ment, which can give you a clearer picture of why the processor performs the actions
that it does as it goes through the source tree.

The Saxon Java parser offers a -T option that sets a TraceListener class to out-
put trace information. When used with the stylesheet and source document above, the
following (with some carriage returns added) is only the beginning of the information
it outputs:

<trace>

<Top-level element="xsl:output" line="5" file="file:/home/dat/listing
s/xq594.xsl" precedence="0"/>

<Top-level element="xsl:template" line="7"
file="file:/home/dat/listings/xq594.xsl" precedence="0"/>

<Top-level element="xsl:template" line="12"
file="file:/home/dat/listings/xq594.xsl" precedence="0"/>

<Top-level element="xsl:template" line="16"
file="file:/home/dat/listings/xq594.xsl" precedence="0"/>

<Instruction element="xsl:output" line="5">
</Instruction> <!-- xsl:output -->

<Source node="/story[1]" line="1" mode="*default*">
<Instruction element="xsl:template" line="7">

<Instruction element="html" line="8">
<Instruction element="body" line="8">

<Instruction element="xsl:apply-templates" line="9">
<Source node="/story[1]/title[1]" line="1" mode="*default*">

<Instruction element="xsl:template" line="12">

In addition to being detailed, this trace information is also well-formed XML, which
means that you can write XSLT stylesheets to do anything you want with it. Consid-
ering the level of detail available in this trace output, one obvious application of
XSLT stylesheets to this information would be the extracting and summarizing of
specific subsets of it.

5.4.4 Listing the nodes in an XPath expression

XPath expressions and match patterns offer so many ways to describe a given set of
nodes that the assembled pieces of your XPath expression may not always describe the
exact set of nodes that you intended. When you think that a template is sending one set
142 CHAPTER 5 PROGRAMMING ISSUES

of nodes to the result tree (or iterating through that set of nodes to look for something)
while it’s actually addressing a different set of nodes, the results can be disorienting.

Fortunately, the xsl:for-each instruction lets you list the nodes described by
a given XPath expression, showing you exactly who this node set’s members are. Some
examples in section 2.1, “Location paths, axes, node tests, and predicates,” page 24,
especially near the end of that section, demonstrate how to list out all the nodes rep-
resented by a given XPath expression.

5.5 EXTENSIONS TO XSLT

If the specialized elements of the XSLT namespace and the combined functions of
XSLT and XPath aren’t enough to perform the transformations you need, XSLT pro-
vides ways to incorporate additional instruction elements and functions into your
stylesheets. Most XSLT processors offer several extra extension elements and functions
to distinguish themselves from the competition. This section describes how a
stylesheet can gracefully handle the possibility that the XSLT processor doesn’t recog-
nize an extension designed for use with another processor.

5.5.1 Extension elements

There are three categories of elements that you can find in an XSLT stylesheet:

• elements from the XSLT namespace that tell the processor how to transform the
source tree into the result tree

• literal result elements of any namespace you like that get added to the result tree
just as they are shown in the stylesheet

• extension elements: customized instruction elements that can be used along with
the instructions from the XSLT namespace

�������	 Elements from the XSLT namespace fall into two categories: top-level ele-
ments, which are children of the xsl:stylesheet element with general
instructions about handling the source document, and the children of the
xsl:template elements known as instructions, which give specific in-
structions about nodes to add to the result tree. Extension elements cannot
be top-level elements; they are always new instructions.

It’s an important part of an XSLT processor’s job to recognize all elements in a
stylesheet from the XSLT namespace and to carry out their instructions. If literal
result elements can be from any namespace (see section 4.3, “Namespaces,” page 92,
for more on this), letting you add elements from the HTML, XLink, or any other
namespace to the result tree, how will a processor know which elements are extension
elements? The processor knows because the stylesheet must explicitly list which
namespaces are to be treated as extension element namespaces in the extension-
element-prefixes attribute.

Let’s look at an example. Remember how, once you assign a value to a variable in
an XSLT stylesheet, you can’t change the value of that variable? Michael Kay added an
EXTENSIONS TO XSLT 143

assign extension element to his Saxon processor that lets you change a variable’s
value all you want. In the following stylesheet, the http://icl.com/saxon namespace
(the one his processor expects to find for Saxon extension elements) is declared as a
namespace with a prefix of “saxon”, and this “saxon” namespace prefix is included in
the value of the xsl:stylesheet element’s extension-element-prefixes
attribute:
<!-- xq610.xsl: converts xq610.xsl into xq611.txt -->
<!-- Must be run with the Saxon processor. -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:saxon="http://icl.com/saxon"

extension-element-prefixes="saxon"

version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:variable name="color"
saxon:assignable="yes">red</xsl:variable>

<xsl:template match="/">

<saxon:assign name="color">blue</saxon:assign>

The color variable has the following value:
<xsl:value-of select="$color"/>

</xsl:template>

</xsl:stylesheet>

��� The extension-element-prefix attribute is usually included with
the xsl:stylesheet element, but can be added to any literal result ele-
ment or extension element. If it’s an attribute of an element other than the
stylesheet’s root xsl:stylesheet element, then it’s only effective with-
in the element where it’s an attribute—in other words, any extension ele-
ments from the specified namespace can only be used in that element or in
one of its descendants. That’s why it’s more convenient to declare any ex-
tension namespaces in an extension-element-prefixes attribute
of the xsl:stylesheet element, because then you can use the extension
elements anywhere you want in the document.

The preceding stylesheet, which you can run using any XML document as input,
doesn’t do much. First, it declares a variable named “color” and assigns it the value “red”.
Next, the single template rule in the stylesheet adds the phrase “The color variable has
the following value:” to the result tree, followed by the variable’s value as put there by the
xsl:value-of instruction. The special part comes inside that template rule just
before this text gets added to the result tree: the saxon:assign extension element
assigns the value “blue” to the “color” variable. (XSLT also allows extension attributes
as well as extension elements, and the special Saxon attribute saxon:assignable
is added to XSLT’s xsl:variable element to let the saxon:assign element
know that changing this variable’s value is Okay.) The output, when run with the
Saxon processor, shows that the variable’s value was successfully changed:
144 CHAPTER 5 PROGRAMMING ISSUES

The color variable has the following value:

blue

When run with the Xalan Java processor, or any others besides Saxon, the
saxon:assign element has no effect:

The color variable has the following value:
red

A lack of error messages might be considered a good thing, but in this case it’s a bad
thing: a stylesheet instruction failed to execute, so a message about this failure would
make for a more robust system. Fortunately, XSLT offers two ways to check whether an
extension element will work or not: fallback and the element-available()
function.

If an XSLT processor doesn’t implement a particular extension element, it must
look for an xsl:fallback child of that element and add its contents to the result
tree. In the following revision of the preceding stylesheet, the xsl:fallback ele-
ment has no contents to add to the result tree, but instead sends an xsl:message
text string to wherever such strings go for the processor in question. (See section 5.4.1,
“Runtime messages, aborting processor execution,” page 134, for more on the
xsl:message element.)

<!-- xq617.xsl: converts xq617.xsl to xq637.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:saxon="http://icl.com/saxon"

extension-element-prefixes="saxon"
version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:variable name="color"

saxon:assignable="yes">red</xsl:variable>

<xsl:template match="/">

<saxon:assign name="color">blue<xsl:fallback>
<xsl:message>This XSLT processor doesn't support saxon:assign.

</xsl:message></xsl:fallback></saxon:assign>

The color variable has the following value:

<xsl:value-of select="$color"/>
</xsl:template>

</xsl:stylesheet>

When run with the Saxon processor, the stylesheet creates the same result as the ear-
lier Saxon run. No xsl:message text appears at the command line, because the
saxon:assign element enclosing the xsl:fallback element executed success-
fully. When run with the Xalan Java parser, however, the stylesheet creates the same
result as with the earlier Xalan run and sends the following message to the command
line window:

This XSLT processor doesn't support saxon:assign.
EXTENSIONS TO XSLT 145

While the xsl:fallback element gives you a way to handle the failure of an
extension element, the Boolean element-available() function offers a way to
check whether the extension element is supported before even trying to execute it.

The following revision of the previous stylesheet has an xsl:choose element
that uses this function to test whether the saxon:assign element is supported. If
so, the saxon:assign element inside the xsl:when element gets evaluated. If not,
the message “This XSLT processor doesn’t support saxon:assign” gets sent wherever
that XSLT processor sends such messages:

<!-- xq619.xsl: converts xq619.xsl -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:saxon="http://icl.com/saxon"
extension-element-prefixes="saxon"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:variable name="color"

saxon:assignable="yes">red</xsl:variable>

<xsl:template match="/">

<xsl:choose>

<xsl:when test="element-available('saxon:assign')">
<saxon:assign name="color">blue</saxon:assign>

</xsl:when>
<xsl:otherwise>

<xsl:message>This XSLT processor doesn't support saxon:assign.
</xsl:message>

</xsl:otherwise>
</xsl:choose>

The color variable has the following value:
<xsl:value-of select="$color"/>

</xsl:template>

</xsl:stylesheet>

The results, when run with Saxon and then Xalan Java, are the same as with the previ-
ous version of the stylesheet. With Saxon, the result tells us that the color variable was
successfully set to “blue”, and no extra messages appear in the command prompt win-
dow. When run with Xalan Java, the result tells us that the color variable remains at
the original setting of “red” and the xsl:message element sends the message about
the lack of support for saxon:assign to the command prompt window.

5.5.2 Using built-in extension functions

An XSLT processor can add functions to the selection required of it by the XSLT and
XPath specifications. To use one of these extension functions, you only have to
declare the namespace and then reference that namespace when calling the function.
(When using extension elements, you need the extension-element-prefixes
attribute to tell the processor that extension elements from certain namespaces will be
used in the stylesheet, but there’s no need for this when using extension functions.)
146 CHAPTER 5 PROGRAMMING ISSUES

To demonstrate the use of an extension function available in an XSLT processor,
we’ll look at Xalan Java’s tokenize() function, which is similar to the Perl pro-
gramming language’s split() function in that it splits up a string whenever it finds
a certain character. If you tell the function to split up “red,green,light blue” at the com-
mas, you’ll get “red”, “green” and “light blue”. Xalan’s tokenize() function accepts
two parameters: a string of text delimited by a certain character, and an optional string
showing the characters used as the delimiter (the default delimiters are the whitespace
characters). The function then splits up the string wherever it finds the delimiting
character, creating a node list that your stylesheet can iterate across using an
xsl:for-each instruction.

Our stylesheet will use the tokenize() function to split up the fields in the
employee elements of the following document:

<employees>

<employee>Herbert,Johnny,09/01/1998,95000</employee>
<employee>Hill,Graham,08/20/2000,89000</employee>

<employee>Hill,Phil,04/23/1999/100000</employee>
<employee>Moss,Sterling,10/16/2000,97000</employee>

</employees>

The following stylesheet converts these employee elements into a table. The two
parameters passed to the tokenize() function are “.” (an abbreviation of
"self::node()", thereby passing the contents of the employee context node),
and a comma enclosed in single quotes to show that it’s the delimiting character in
the first string. The stylesheet also uses the function-available() function
that must be supported by all XSLT processors to check whether the tokenize()
function is available for use by the stylesheet. If it is, the contents of the xsl:when
element are added to the result tree. The tokenize() function splits up the
employee contents into a node list, and the xsl:for-each instruction goes
through that list, adding the contents of each node to the result tree enclosed by an
entry element. If the function isn’t available, the xsl:otherwise instruction just
adds the contents of the source tree employee element inside the row element as
one big entry element.

<!-- xq620.xsl: converts xq621.xml into xq622.xml, xq623.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xalan="http://xml.apache.org/xalan"

exclude-result-prefixes="xalan"

version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="employees">
<table>

<xsl:apply-templates/>
</table>

</xsl:template>

<xsl:template match="employee">
EXTENSIONS TO XSLT 147

<row>

<xsl:choose>
<xsl:when test="function-available('xalan:tokenize')">

<xsl:for-each select="xalan:tokenize(.',')">
<entry><xsl:value-of select="."/></entry>

</xsl:for-each>
</xsl:when>

<xsl:otherwise>
<entry><xsl:value-of select="."/></entry>

</xsl:otherwise>
</xsl:choose>

</row>
</xsl:template>

</xsl:stylesheet>

For the processor to recognize the function as an extension function, the stylesheet
calls tokenize() using the namespace prefix (“saxon”) that goes with the declara-
tion identifying the namespace. An XSLT processor passes along namespace declara-
tions for any referenced namespaces to the result tree, but we don’t want this
declaration in our result document, so the stylesheet has an exclude-result-
prefixes attribute in the xsl:stylesheet element to prevent the declaration.

When run with the Xalan Java processor, the stylesheet splits up each employee
element into separate entry elements in each row.

<table>

<row><entry>Herbert</entry><entry>Johnny</entry>
<entry>09/01/1998</entry><entry>95000</entry></row>

<row><entry>Hill</entry><entry>Graham</entry>
<entry>08/20/2000</entry><entry>89000</entry></row>

<row><entry>Hill</entry><entry>Phil</entry>
<entry>04/23/1999/100000</entry></row>

<row><entry>Moss</entry><entry>Sterling</entry>
<entry>10/16/2000</entry><entry>97000</entry></row>

</table>

When run with the Saxon XSLT processor, which doesn’t support Xalan’s token-
ize() function, each employee element is added to the result tree as one big
entry element.

<table>
<row><entry>Herbert,Johnny,09/01/1998,95000</entry></row>

<row><entry>Hill,Graham,08/20/2000,89000</entry></row>
<row><entry>Hill,Phil,04/23/1999/100000</entry></row>

<row><entry>Moss,Sterling,10/16/2000,97000</entry></row>
</table>

Saxon actually does have a tokenize() function, but because it is Saxon’s own exten-
sion function, you have to use it by declaring the appropriate namespace and using
that namespace to identify the function when calling it. If the stylesheet above was
used in a production environment in which Xalan Java and Saxon were both available,
148 CHAPTER 5 PROGRAMMING ISSUES

the xsl:choose element could include another xsl:when element to check
whether saxon:tokenize() is available and, if so, to use it.

Take a look through your XSLT processor’s documentation to see what extension
functions are available. Along with debugging features, this is another area where pro-
cessor developers strive to stand out from the competition, because it’s an obvious
place to add features unavailable in other processors. It’s also a place where developers
can address any deficiencies they see in XSLT by adding features they feel should have
been there in the first place.

5.6 NUMBERS AND MATH

XSLT itself doesn’t offer much for manipulating numbers, but it is full of support for
XPath’s math capabilities that let you do all the basic kinds of arithmetic and a little
more. Let’s look at a stylesheet that demonstrates these capabilities by using the values
from this document:

<numbers>

<x>4</x>
<y>3.2</y>

<z>11</z>
</numbers>

Lines A through N of the stylesheet each make (or attempt to make) a different calcu-
lation. These calculations use the numbers in the document above and other numbers
either hardcoded in the stylesheet or retrieved from functions that return numbers:

<!-- xq312.xsl: converts xq311.xml into xq313.txt -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="numbers">

A. 4 + 3.2 = <xsl:value-of select="x + y"/>
B. 3.2 - 4 = <xsl:value-of select="y - x"/>

C. 4 * 3.2 = <xsl:value-of select="x * y"/>
D. 11/3.2 = <xsl:value-of select="z div y"/>

E. 4 + 3.2 * 11 = <xsl:value-of select="x+y*z"/>
F. (4 + 3.2) * 11 = <xsl:value-of select="(x+y)*z"/>

G. 11 mod 4 = <xsl:value-of select="z mod x"/>
H. 4 + 3.2 + 11 = <xsl:value-of select="sum(*)"/>

I. floor(3.2) = <xsl:value-of select="floor(y)"/>
J. ceiling(3.2) = <xsl:value-of select="ceiling(y)"/>

K. round(3.2) = <xsl:value-of select="round(y)"/>
L. 11 + count(*) = <xsl:value-of select="11+count(*)"/>

M. 3.2 + string-length("3.2") =
<xsl:value-of select="y + string-length(y)"/>

N. 11 + "hello" = <xsl:value-of select="z + 'hello'"/>
</xsl:template>

</xsl:stylesheet>
NUMBERS AND MATH 149

Before we talk about what each line is doing, let’s look at the result of applying the
stylesheet to the numbers document:

A. 4 + 3.2 = 7.2

B. 3.2 - 4 = -0.8
C. 4 * 3.2 = 12.8

D. 11/3.2 = 3.4375
E. 4 + 3.2 * 11 = 39.2

F. (4 + 3.2) * 11 = 79.2
G. 11 mod 4 = 3

H. 4 + 3.2 + 11 = 18.2
I. floor(3.2) = 3

J. ceiling(3.2) = 4
K. round(3.2) = 3

L. 11 + count(*) = 14
M. 3.2 + string-length("3.2") =

6.2
N. 11 + "hello" = NaN

The stylesheet has a single template rule for the source tree’s numbers element. This
template has a series of xsl:value-of instructions whose select attributes use
the values of the numbers element’s x, y, and z child elements to perform various
mathematical tasks. Mathematical expressions like these can use the full power of
XPath to say which element or attribute has a number they need. This stylesheet,
however, is more concerned with demonstrating the range of mathematical opera-
tions available than with using fancy XPath expressions to retrieve elements and
attributes from odd parts of a document.

Line A of the template adds the value of x (4) to the value of y (3.2) and puts
their sum, 7.2, in the result tree. It’s simple and straightforward, and it demonstrates
that you’re not limited to integers for stylesheet math.

Line B subtracts 4 from 3.2 for a result of -0.8. Negative numbers shouldn’t pose
any difficulties for XSLT processors.

������� When using some XSLT processors, the use of decimal numbers may in-
troduce a tiny error. For example, the “3.2 – 4” in this example comes out
as “–0.7999999999999998” on some processors. While being off by
.0000000000000002 isn’t much, being off at all shows that math is not
XSLT’s strong point.

Line C multiplies 4 and 3.2, using the asterisk as the multiplication operator, for an
answer of 12.8.

Line D divides the value of the z element (11), by 3.2, showing an XSLT pro-
cessor’s ability to perform floating-point division.
150 CHAPTER 5 PROGRAMMING ISSUES

������� Although most programming languages traditionally use the slash character
to represent mathematical division, XPath already uses the slash to separate
the steps in an XPath location path (for example, wine/vintage to rep-
resent the vintage child element of the wine element). Because of this,
XPath and XSLT use the string “div” for division.

Lines E and F illustrate how parentheses have the same effect on operator precedence
that they have in normal math notation: without them, multiplication happens
before addition, so that 4 + 3.2 * 11 = 4 + 35.2. With the parentheses around the
“4 + 3.2”, addition happens first, so that (4 + 3.2) * 11 = 7.2 * 11.

Line G demonstrates the mod operator, which shows the remainder if you divide
the first term by the second. The example shows that 11 modulo 4 equals 3, because
4 goes into 11 twice with 3 left over. This operator is great for checking whether one
number divides into another evenly. Just check whether the larger number modulo the
smaller equals zero.

Line H demonstrates the sum() function. With a node list as an argument, this
function sums up all the numbers in that list. In the example, the asterisk means “all
the children of the context node”—the numbers element’s x, y, and z children.

Lines I and J demonstrate the floor() and ceiling() functions. If you pass
either of these an integer, they return that integer. If you pass floor() a noninteger,
it returns the highest integer below that number. In the example, floor(3.2) is 3.
The ceiling function returns the smallest integer above a noninteger number; in
the example, ceiling(3.2) equals 4.

Line K’s round() function rounds off a noninteger by returning the closest inte-
ger. When 3.2 is passed to this function, it returns 3. Passing 3.5 or 3.6 to it would
cause it to return a 4.

Line L incorporates another XPath function: count(), which returns the num-
ber of nodes in the set passed to it as an argument. (See section 3.7, “Counting ele-
ments and other nodes,” page 61, for more on this function.) XPath offers several
functions that, while not overtly mathematical, return numbers and can be used for
any calculations you like: count(), last(), position(), and string-
length(). Line M demonstrates this last one, which returns the length of a string.

Line N shows what happens when you try to perform math with something that
isn’t a number. When 11 gets added to the string “hello”, the result is the string
“NaN”, an abbreviation for “Not a Number.” When you pull a number out of an ele-
ment’s content or attribute value and then use it for a calculation, you can’t always be
sure that what you pulled is really a number, so XSLT’s clearly defined behavior for
the unworkable case makes it easier to check for and cope with in your code.

XSLT is about manipulating text, not numbers, but you can build on the math-
ematical operations provided as part of XSLT to perform more complicated calcula-
tions. For example, the following stylesheet, which accepts any document as input,
computes the value of pi. The precision of the result depends on the value of the
iterations variable:
NUMBERS AND MATH 151

<!-- xq314.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>

<!-- Compute pi. Based on Leibniz's algorithm that
pi/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11... which I did as

pi = 4 - 4/3 + 4/5 - 4/7 + 4/9 - 4/11...
-->

<xsl:variable name="iterations" select="80000"/>

<xsl:template name="pi">
<!-- named template called by main template below -->

<xsl:param name="i">1</xsl:param>
<xsl:param name="piValue">0</xsl:param>

<xsl:choose>

<!-- If there are more iterations to do, add the passed
value of pi to another round of calculations. -->

<xsl:when test="$i <= $iterations">
<xsl:call-template name="pi">

<xsl:with-param name="i" select="$i + 4"/>
<xsl:with-param name="piValue"

select="$piValue + (4 div $i) - (4 div ($i + 2))"/>
</xsl:call-template>

</xsl:when>

<!-- If no more iterations to do, add
computed value to result tree. -->

<xsl:otherwise>
<xsl:value-of select="$piValue"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

<xsl:template match="/">

<xsl:call-template name="pi"/>
</xsl:template>

</xsl:stylesheet>

The repetition is implemented using a recursive named template (see “Arbitrary repeti-
tion with named template recursion,” on page 122, for information about how these
work). With the iterations setting shown, the stylesheet creates this result:

3.1415676535897985

With that many iterations, the answer is only accurate up to the first four digits after
the decimal. Of course, if you seriously want to compute the value of pi, there are
many more appropriate languages, but it’s nice to know that you can push XSLT to
do some fairly complex math when necessary.
152 CHAPTER 5 PROGRAMMING ISSUES

5.7 STRINGS

XSLT is a language for manipulating XML documents. XML documents are text.
When you’re manipulating text, functions for searching strings and pulling out sub-
strings are indispensable for rearranging documents to create new documents. The
XPath string functions incorporated by XSLT give you a lot of power when you’re
manipulating element character data, attribute values, and any other strings of text
that your stylesheet can access.

5.7.1 Extracting and comparing strings

To demonstrate XSLT’s string manipulation functions, we’ll use the following simple
document:

<poem>

 <verse>Seest thou yon dreary Plain, forlorn and wild,</verse>
 <verse>

 The seat of desolation, void of light,

</verse>

</poem>

(Note how the second verse element begins and ends with extra spaces and carriage
returns. We’ll learn about a function that tells the XSLT processor to ignore them.)
The following template adds the complete contents of each verse element in the
sample document above to the result tree at line 1 and then demonstrates ways to pull
substrings out of them. Curly braces in the result make it easier to see exactly which
substrings are getting pulled out of the verse elements:

<!-- xq319.xsl: converts xq318.xml into xq320.txt -->

<xsl:template match="verse">
 1. By itself: {<xsl:value-of select="."/>}

 2. {<xsl:value-of select="substring(.,7,6)"/>}
 3. {<xsl:value-of select="substring(.,12)"/>}

 4. {<xsl:value-of select="substring-before(.,'dreary')"/>}
 5. {<xsl:value-of select="substring-after(.,'desolation')"/>}

</xsl:template>

Before talking about individual functions, let’s look at what this stylesheet does to the
sample document:

 1. By itself: {Seest thou yon dreary Plain, forlorn and wild,}

 2. {thou y}
 3. {yon dreary Plain, forlorn and wild,}

 4. {Seest thou yon }
 5. {}

 1. By itself: {

 The seat of desolation, void of light,
STRINGS 153

}

 2. { The}
 3. {e seat of desolation, void of light,

}

 4. {}
 5. {, void of light,

}

The source document has two verse elements, so the “verse” template rule adds two
sets of lines 1 through 5 to the result. Each line 1 in the result shows the complete
contents of the verse element. For the second verse element, line 1 includes the
extra whitespace around the source document’s text.

Lines 2 and 3 of the stylesheet demonstrate the substring() function. In line 2,
the function call substring(.,7,6) takes the verse element’s contents (because
“.” abbreviates self::node()) and, starting at its seventh character, gets six char-
acters. For the first verse element, it skips the first six characters (“Seest ”) to start
at the seventh and get the six-character string “thou y”. For the second verse ele-
ment, the six characters to skip on the way to that seventh character are two carriage
returns and four spaces, so that the six-character string starting at the seventh character
is “ The” (three spaces followed by the three letters you see). Line 3 of the stylesheet
has no third parameter to specify the length of the substring to extract, so the sub-
string(.,12) function call starts at the twelfth character and gets everything to the
end of the string. For the second verse element, this includes the two carriage
returns that end it.

The function call substring-before(.,'dreary') in line 4 of the
stylesheet looks for the string passed as the second argument in the string passed as the
first argument (., or self::node()). If it finds that string, it returns everything in
the first string before that occurrence of the second string. When looking for “dreary”
in the first verse element, the function finds it and returns the string “Seest thou
yon ”; in the second verse element, it doesn’t find it, and nothing appears between
the curly braces of the fourth line for that element.

The function call substring-after(.,'desolation') resembles sub-
string-before except that if it finds the second argument in the first argument’s
text, it returns the string after that text. The first verse element doesn’t have the
string “desolation”, so nothing appears between the curly braces of the first line 5. The
second verse element does contain this string, and the XSLT processor puts the
characters after it (the string “, void of light,” followed by two carriage returns)
between the curly braces of the result document’s second line 5.

The next stylesheet demonstrates a more diverse group of XPath string functions.

<!-- xq321.xsl: converts xq318.xml into ,.txt -->

<xsl:template match="verse">
 1. {<xsl:value-of select="concat('length: ',string-length(.))"/>}

 2. <xsl:if test="contains(.,'light')">
154 CHAPTER 5 PROGRAMMING ISSUES

 <xsl:text>light: yes!</xsl:text>

 </xsl:if>
 3. <xsl:if test="starts-with(.,'Seest')">

 <xsl:text>Yes, starts with "Seest"</xsl:text>
 </xsl:if>

 4. {<xsl:value-of select="normalize-space(.)"/>}
 5. {<xsl:value-of select="translate(.,'abcde','ABCD')"/>}

</xsl:template>

With the same source document as the previous example, this new stylesheet creates
this result:

 1. {length: 46}

 2.

 3. Yes, starts with "Seest"

 4. {Seest thou yon dreary Plain, forlorn and wild,}
 5. {Sst thou yon DrAry PlAin, forlorn AnD wilD,}

 1. {length: 49}

 2. light: yes!

 3.

 4. {The seat of desolation, void of light,}

 5. {

 Th sAt of DsolAtion, voiD of light,

}

Line 1 of this stylesheet demonstrates two functions: string-length(), which
returns the number of characters in the string passed as an argument, and concat(),
which concatenates its argument strings into one string. The function call concat
('length: ',string-length(.)) shows that its arguments don’t have to be lit-
eral strings; you can use functions that return strings (or can easily be converted into
strings, like the integer returned by the string-length() function) as arguments
as well. This, along with its ability to accept any number of arguments greater than
one, make concat() a very flexible function.

Lines 2 and 3 of the stylesheet (which each take up more than one line of the
stylesheet) each have an xsl:if instruction that uses a Boolean string function—that
is, a function that evaluates a certain condition about a string or strings and returns a
Boolean value of true or false. The first function call, contains(.,'light'),
checks whether its first argument contains the string passed as the second argument and
returns a Boolean true if it does. For the source document’s first verse element the
argument doesn’t contain this string, so nothing appears after the first “2” in the result.
The second verse element does, so the message “light: yes!” appears in the result.

Line 3’s xsl:if instruction has a similar function call in its test attribute:
starts-with(.,'Seest'), which only returns true if the string in its first argu-
STRINGS 155

ment starts with the string in its second. This is true for the first verse element, so
the message “Yes, starts with ‘Seest’” appears on the result tree, but the second verse
element doesn’t, so nothing appears after its “3.”

Line 4’s normalize-space(.) function call accepts one argument, strips
whitespace at its beginning and end, replaces any sequence of whitespace in the string
with a single space character, and returns the resulting string. In English, the targeted
whitespace characters are the spacebar space, the tab character, and the carriage return.
The first verse element’s text looks the same when processed by this function, but
the second is definitely different: all the leading and trailing space characters have been
removed. An XML processor does this to the spaces in most kinds of attributes, and
it’s handy to be able to do it to element character data as well—especially when you
want to compare two strings of element character data whose only difference may be
the spacing around them in their source document.

Line 5’s translate() function provides a way to map one set of characters to
another. It goes through the string in the first argument and replaces any characters
also in the second argument with the corresponding character in the third argument.
If the third argument has no corresponding character, then the XSLT processor deletes
the one found in the first string. In the example, the function call trans-
late(.,'abcde','ABCD') maps the letters “a”, “b”, “c”, and “d” to their upper-
case equivalents. Because the letter “e” is in that second argument but not the third,
it’s mapped to nothing—that is, any occurrences of it are removed from the copy of
the first argument’s string that the function returns.

Let’s look at a more realistic example of string manipulation functions. In the fol-
lowing, the binCode element represents a wine brand’s location on the wine store
shelf. The first two characters are its row; the third character is its shelf; and the text
after the hyphen is its product number:

<winelist>

 <wine>
 <winery>Lindeman's</winery>

 <product>Bin 65</product>
 <year>1998</year>

 <price>6.99</price>
 <binCode>15A-7</binCode>

 </wine>
 <wine>

 <winery>Benziger</winery>
 <product>Carneros</product>

 <year>1997</year>
 <price>7.55</price>

 <binCode>15C-5</binCode>

 </wine>
 <wine>

 <winery>Duckpond</winery>
 <product>Merit Selection</product>

 <year>1996</year>
156 CHAPTER 5 PROGRAMMING ISSUES

 <price>14.99</price>

 <binCode>12D-1</binCode>
 </wine>

</winelist>

The following template rule separates the three components of the binCode ele-
ment type into separate elements: row, shelf, and prodNum, all inside a pro-
ductLocation container element:

<!-- xq324.xsl: converts xq323.xml to xq318.xml -->

 <xsl:template match="binCode">

 <productLocation>
 <row><xsl:value-of select="substring(text(),1,2)"/>

 </row>
 <shelf><xsl:value-of select="substring(.,3,1)"/>

 </shelf>
 <prodNum><xsl:value-of select="substring-after(text(),'-')"/>

 </prodNum>
 </productLocation>

 </xsl:template>

The call to substring() that creates the row element has text() as its first argu-
ment. For the purposes of this stylesheet, this means the same thing as “.”. (Techni-
cally, text() refers to the text node child of the context node, and “.” refers to a
string representation of the node’s contents when used as the first parameter to the
substring() function.) The resulting XML looks like the input, except that the
XSLT processor has replaced each binCode element with the productLocation
element and its three child elements:

<?xml version="1.0" encoding="UTF-8"?>

<winelist>
 <wine>

 <winery>Lindeman's</winery>
 <product>Bin 65</product>

 <year>1998</year>
 <price>6.99</price>

 <productLocation><row>15</row><shelf>A</shelf>
 <prodNum>7</prodNum></productLocation>

 </wine>
 <wine>

 <winery>Benziger</winery>
 <product>Carneros</product>

 <year>1997</year>
 <price>7.55</price>

 <productLocation><row>15</row><shelf>C</shelf>
 <prodNum>5</prodNum></productLocation>

 </wine>
 <wine>

 <winery>Duckpond</winery>
 <product>Merit Selection</product>

 <year>1996</year>
STRINGS 157

 <price>14.99</price>

 <productLocation><row>12</row><shelf>D</shelf>
 <prodNum>1</prodNum></productLocation>

 </wine>
</winelist>

To see if two elements are the same, XSLT compares their string values using the
equals sign (“=”). To demonstrate several variations on this, our next stylesheet com-
pares the a element in the following with its sibling elements:

<poem>
 <a>full of Pomp and Gold

 full of Pomp and Gold
 <c>full of pomp and gold</c>

 <d>
full of Pomp and Gold

</d>

</poem>

The stylesheet contains a template rule for the a element with a series of xsl:if
instructions. Each instruction compares the a element’s content with something and
reports whether or not the test is true:

<!-- xq327.xsl: converts xq326.xml into xq328.txt -->

<xsl:template match="a">

 <xsl:if test=". = 'full of Pomp and Gold'">

 1. a = "full of Pomp and Gold"
 </xsl:if>

 <xsl:if test=". = ../b">

 2. a = ../b
 </xsl:if>

 <xsl:if test=". = ../c">
 3. a = ../c

 </xsl:if>

 <xsl:if test=". != ../c">
 4. a != ../c

 </xsl:if>

 <xsl:if
 test="translate(.,'abcdefghijklmnopqrstuvwxyz',

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ') =
 translate(../c,'abcdefghijklmnopqrstuvwxyz',

 'ABCDEFGHIJKLMNOPQRSTUVWXYZ')">
 5. a = ../c (ignoring case)

 </xsl:if>

 <xsl:if test=". = ../d">

 6. a = ../d
 </xsl:if>

 <xsl:if test=". = normalize-space(../d)">
158 CHAPTER 5 PROGRAMMING ISSUES

 7. a = normalize-space(../d)

 </xsl:if>

</xsl:template>

As the result shows, xsl:if elements 1, 2, 4, 5, and 7 are true for the preceding
document:

 1. a = "full of Pomp and Gold"

 2. a = ../b

 4. a != ../c

 5. a = ../c (ignoring case)

 7. a = normalize-space(../d)

Test number 1 in this stylesheet compares the a element (represented by “.”) with the
literal string “full of Pomp and Gold”. They’re equal, as the message added to the
result tree tells us. Test 2 compares the a element with its sibling b element, and as
the result shows, they, too, are equal. (If you’re unfamiliar with the ../b notation to
point to the b sibling, see chapter 2, “XPath,” on page 23)

Test 3 compares element a with element c, and they’re not equal—two characters
are in a different case. XML is case-sensitive, so this xsl:if instruction adds nothing
to the result.

Test 4 compares elements a and c again, but using the != comparison operator
to check for inequality. This test is true, so a message about test 4 gets added to the
result.

The fifth test uses the translate() function to map the a and c elements to
upper-case versions, then compares those. Because upper-case versions of these two ele-
ments are the same, test 5 is true, and the appropriate message gets added to the result.

XSLT offers no built-in way to automatically convert a string’s case because the
mapping is often dependent upon the language being used—and sometimes, even
dependent upon where the language is being used. For example, an upper-case “é” at
the start of a word is “É” in France but “E” in Canada.

Test 6 compares element a with element d, which has the same text and some addi-
tional whitespace (a few carriage returns and either spacebar spaces or tabs to indent
the text). As the result document shows, the two elements are not equal.

Test 7 compares a and d again, but a element is compared to a version of the d
element returned by the normalize-space() function. This time, the equality
test is true.

The normalize-space() function has been the savior of many string equal-
ity tests. XML’s treatment of whitespace can be a complex topic, because it’s not
always clear which whitespace an XML parser ignores and which it recognizes. Any
automated process that creates XML elements may put whitespace between elements
or it may not, so a way to say “get rid of extraneous whitespace before comparing this
string to something” is very useful in XSLT. In fact, the seventh xsl:if instruction
STRINGS 159

above would be even better if both sides of the comparison in the xsl:if element’s
test attribute were passed to this function, like this:
<!-- xq329.xsl -->

 <xsl:if test="normalize-space(.) = normalize-space(../d)">

 7. a = normalize-space(../d)
 </xsl:if>

Check out your particular XSLT processor’s documentation to see if it offers any string
manipulation functions in addition to the ones required by the XSLT specification.

5.7.2 Search and replace

XSLT offers no built-in method for globally replacing one string of text with another.
The translate() function can replace specific characters with other characters.
(See section 5.7.1, “Extracting and comparing strings,” page 153, for more on this.)

Global replacement is a basic text transformation task. XSLT is a language for
transforming text (that is, a language for transforming XML documents, which are
text) so string replacement is closely related to the tasks that a stylesheet developer
often attacks with XSLT. Fortunately, existing XSLT techniques can be combined to
give a stylesheet a search-and-replace capability. The most important technique is the
use of parameters with recursive named templates. (See “Arbitrary repetition with
named template recursion,” on page 122 if you’re unfamiliar with this technique.)

As an example, we’ll look at a stylesheet that converts the string “finish” to
“FINISH” throughout the following XML document:
<winelist>

<wine grape="Chardonnay">

<winery>Benziger</winery>
<product>Carneros</product>

<year>1997</year>
<desc>Well-textured flavors, good finish.</desc>

<prices>
<list>10.99</list>

<discounted>9.50</discounted>
<case>114.00</case>

</prices>
</wine>

<wine grape="Cabernet">

<winery>Duckpond</winery>
<product>Merit Selection</product>

<year>1996</year>
<desc>Sturdy and generous flavors, long finish.</desc>

<prices>
<list>13.99</list>

<discounted>11.99</discounted>
<case>143.50</case>

</prices>
</wine>

</winelist>
160 CHAPTER 5 PROGRAMMING ISSUES

The stylesheet has three template rules. The third one just copies all the source tree
nodes, except for text nodes, to the result tree.

The second template rule handles text nodes. It calls the first template, the named
“globalReplace” template, to add the text node template’s contents to the result tree:

<!-- xq332.xsl: converts xq331.xml into xq333.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template name="globalReplace">

<xsl:param name="outputString"/>
<xsl:param name="target"/>

<xsl:param name="replacement"/>
<xsl:choose>

<xsl:when test="contains($outputString,$target)">

<xsl:value-of select=
"concat(substring-before($outputString,$target),

$replacement)"/>
<xsl:call-template name="globalReplace">

<xsl:with-param name="outputString"
select="substring-after($outputString,$target)"/>

<xsl:with-param name="target" select="$target"/>
<xsl:with-param name="replacement"

select="$replacement"/>
</xsl:call-template>

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="$outputString"/>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<xsl:template match="text()">

<xsl:call-template name="globalReplace">

<xsl:with-param name="outputString" select="."/>

<xsl:with-param name="target" select="'finish'"/>

<xsl:with-param name="replacement" select="'FINISH'"/>

</xsl:call-template>

</xsl:template>

<xsl:template match="@*|*">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

The “globalReplace” named template is a general purpose string replacement tem-
plate based on one posted to the XSL-List mailing list by Mike J. Brown. As the
example shows, it gets called with three parameters:
STRINGS 161

1 outputString is the string on which it will perform the global replacement.

2 target is the string that it will look for in outputString—the string that
will be replaced.

3 replacement is the new string that will be substituted for any occurrence of
target in outputString.

The template must add outputString to the result tree unchanged if it has no
occurrence of the target string, so, first, it checks whether the target string is there or
not. An if-else construction would be great for this, but XSLT offers no equivalent of
an “else” condition to go with its xsl:if instruction. However, an xsl:choose
instruction can perform the same logic with a single xsl:when element, followed by
an xsl:otherwise element. In the template, the xsl:when condition uses the
contains() function to check whether outputString has target in it. If it
does, an xsl:value-of instruction uses a concat() function to put together
two strings for the result tree: everything in outputString before the first tar-
get and then the replacement string.

What about the rest of outputString, after the target that was found and
replaced by the replacement string? The “globalReplace” named template makes
a recursive call to itself to make any additional necessary substitutions in the remaining
part of the string. The template passes substring-after($output-
String,$target) (that is, everything in outputString after the found occur-
rence of target) as the value of outputString for this new invocation of the
function. If that new invocation finds another occurrence of the target string, it will
add everything up to it and the replacement string to the result tree, then call the func-
tion again for the remainder of that string if necessary. By making recursive calls to
handle the remainder of the string, it really is a global replace, because multiple occur-
rences of the target all get replaced.

If the xsl:when instruction’s test attribute doesn’t find the target string
in outputString, the xsl:otherwise element’s xsl:value-of instruction
only adds the value of outputString to the result tree. This is the crucial stopping
condition that any recursive template needs to ensure so that it doesn’t call itself for-
ever. Whether outputString has zero occurrences of target or fifty of them,
eventually this xsl:otherwise part of the xsl:choose instruction will get cho-
sen and the “globalReplace” named template will not call itself again for this source
tree text node.

The result of calling this stylesheet with the preceding document has both occur-
rences of the string “finish” replaced with “FINISH”:

<winelist>

<wine grape="Chardonnay">

<winery>Benziger</winery>
<product>Carneros</product>
162 CHAPTER 5 PROGRAMMING ISSUES

<year>1997</year>

<desc>Well-textured flavors, good FINISH.</desc>
<prices>

<list>10.99</list>
<discounted>9.50</discounted>

<case>114.00</case>
</prices>

</wine>

<wine grape="Cabernet">

<winery>Duckpond</winery>
<product>Merit Selection</product>

<year>1996</year>
<desc>Sturdy and generous flavors, long FINISH.</desc>

<prices>
<list>13.99</list>

<discounted>11.99</discounted>
<case>143.50</case>

</prices>
</wine>

</winelist>

One nice thing about this “globalReplace” named template is that it really is a general
purpose named template: it still works when called in other situations. For example,
the following template also calls the “globalReplace” named template, but note the
template’s match condition: It only replaces the one-character string “9” with the “0”
in text nodes that are child nodes of year elements, because those are the nodes
specified by the template rule’s match condition:

<!-- xq334.xsl: converts xq331.xml into xq335.xml -->

<xsl:template match="year/text()">
<xsl:call-template name="globalReplace">

<xsl:with-param name="outputString" select="."/>
<xsl:with-param name="target" select="'9'"/>

<xsl:with-param name="replacement" select="'0'"/>

</xsl:call-template>

</xsl:template>

When run with the same source document as the previous example, this template rule
replaces the nines in the year elements and leaves the nines in the prices elements alone:

<?xml version="1.0" encoding="UTF-8"?>

<winelist>

<wine grape="Chardonnay">

<winery>Benziger</winery>
<product>Carneros</product>

<year>1007</year>

<desc>Well-textured flavors, good finish.</desc>

<prices>

<list>10.99</list>

<discounted>9.50</discounted>
STRINGS 163

<case>114.00</case>

</prices>

</wine>

<wine grape="Cabernet">
<winery>Duckpond</winery>

<product>Merit Selection</product>
<year>1006</year>

<desc>Sturdy and generous flavors, long finish.</desc>
<prices>

<list>13.99</list>

<discounted>11.99</discounted>

<case>143.50</case>

</prices>

</wine>

</winelist>

(If you really want to replace one character with another like this, the translate()
function would be more efficient.) We can see that customizing the stylesheet’s use of
the “globalReplace” template doesn’t have to mean tinkering with the template itself.
Instead, being more selective about the outputString value passed to the template
allows the stylesheet to focus the template’s power.

5.8 VARIABLES AND PARAMETERS: SETTING AND USING

Variables and parameters add flexibility to your stylesheets. With a properly designed
stylesheet, the simple resetting of a variable value (or parameter value, which is even eas-
ier to reset) can adapt your stylesheet to deal with different kinds of data and situations.

5.8.1 Variables

A variable in XSLT has more in common with a variable in algebra than with a vari-
able in a typical programming language. A variable is a name that represents a value
and, within a particular application of a template, it will never represent any other
value: it can’t be reset. XSLT variables actually have a lot more in common with some-
thing known as “constants” in many programming languages, and variables are used
for a similar purpose as constants. If you use the same value multiple times in your
stylesheet, and a possibility exists that you’ll have to change them all to a different
value, it’s better to assign that value to a variable and use references to the variable
instead. Then, if you need to change the value when re-using the stylesheet, you only
change the value assigned in the creation of that variable.

For example, imagine that we want to turn this XML

<wine grape="Cabernet">

 <winery>Duckpond</winery>
 <product>Merit Selection</product>

 <year>1996</year>
 <price>11.99</price>

</wine>
164 CHAPTER 5 PROGRAMMING ISSUES

into this HTML:

 Duckpond Cabernet

 <i>Merit Selection</i>

 1996

 11.99

The following templates would accomplish this:

<!-- xq340.xsl: converts xq338.xml into xq339.html -->

<xsl:template match="winery">
 <xsl:apply-templates/>

 <xsl:text> </xsl:text>
 <xsl:value-of select="../@grape"/>

</xsl:template>

<xsl:template match="product">
 <i><xsl:apply-templates/></i>

</xsl:template>

<xsl:template match="year | price">
 <xsl:apply-templates/>

</xsl:template>

If you want to change the three font elements’ size attribute to “12pt”, however,
it would be too easy to miss one—especially if the template rules weren’t right next
to each other in the stylesheet. The solution is to use a variable to represent this
size value:

<!-- xq341.xsl: converts xq338.xml into xq339.html -->

<xsl:variable name="bodyTextSize">10pt</xsl:variable>

<xsl:template match="winery">

 <xsl:apply-templates/>
 <xsl:text> </xsl:text>

 <xsl:value-of select="../@grape"/>

</xsl:template>

<xsl:template match="product">

 <i>
 <xsl:apply-templates/></i>

</xsl:template>

<xsl:template match="year | price">
 <xsl:apply-templates/>

</xsl:template>
VARIABLES AND PARAMETERS: SETTING AND USING 165

���	 When referencing a variable or parameter from a literal result element’s at-
tribute, you want the XSLT processor to plug in the variable’s value and not
a dollar sign followed by the variable’s name at that point in the template.
To do this, put the variable inside curly braces to make it an attribute value
template. To plug a variable’s value into the content of a result tree ele-
ment, instead of an attribute value, use an xsl:value-of instruction.

In the preceding example, if the $bodyTextSize variables were not enclosed by
curly braces, each font start-tag in the result would have looked like this:
.

The xsl:variable instruction creates a variable. Its name attribute identifies
the variable’s name. The value can be specified either as the xsl:variable ele-
ment’s contents (like the “10pt” in the example) or as the value of an optional select
attribute in the xsl:variable element’s start-tag.

The value of the select attribute must be an expression. This offers two nice
advantages:

1 It shows that the xsl:variable element isn’t as limited as the constants used
by popular programming languages, because the variable’s value doesn’t need to
be hardcoded when the stylesheet is written.

2 The attribute value doesn’t need curly braces to tell the XSLT processor “This is
an attribute value template, evaluate it as an expression,” because it always evalu-
ates an xsl:variable element’s select attribute value as an expression.

The following two xsl:variable elements have the same effect as the one in the
previous example: they set the bodyTextSize variable to a value of “10pt”. The
bodyTextSize variable has its value assigned in a select attribute instead of in
its element content; the value assigned will be the return value of a concat function
that concatenates the string “pt” to the result of adding $baseFontSize+2. What’s
$baseFontSize? It’s another variable, which is defined above the bodyText-
Size variable’s xsl:variable element. That value of “8” is added to 2 and con-
catenated to “pt” to create a value of “10pt” for the bodyTextSize variable, which
can then be used just like the bodyTextSize variable in the previous example.

<!-- xq342.xsl: converts xq338.xml into xq339.html -->

<xsl:variable name="baseFontSize" select="8"/>

<xsl:variable name="bodyTextSize"
 select="concat($baseFontSize+2,'pt')"/>

This example demonstrates options available when using an expression in the
select attribute to assign a variable’s value. The second xsl:variable element
references another variable, does some math, and makes a function call. Variables
aren’t as limited as many XSLT newcomers might think.

The example also demonstrates another nice feature of variables: they don’t have
to all be strings. Once baseFontSize is set to “8”, the select value of the body-
166 CHAPTER 5 PROGRAMMING ISSUES

TextSize variable’s xsl:variable element adds “2” to it and comes up with
“10”. If the XSLT processor had treated these numbers as strings, putting “8” and “2”
together would get us “82”. Instead, the XSLT processor treats the baseFontSize
variable as a number. It can treat a variable as any type of object that can be returned
by an XSLT expression: a string, a number, a Boolean value, or a node set.

������� If an XSLT variable has a value assigned by an xsl:variable element’s
contents and by a select attribute, the XSLT processor uses the one in
the select attribute.

The examples above show “top-level” variables. They’re defined with xsl:variable
elements that are children of the main xsl:stylesheet element, making them
global variables that can be referenced anywhere in the stylesheet.

Variables can be “local” as well—that is, defined inside a template rule and only
available for use within that template rule. For example, the following templates have
the same result as the ones in the examples above, except that the font start-tag before
the result winery element’s content has a value of “12pt” in its size attribute
instead of “10pt”.

<!-- xq343.xsl: converts xq338.xml into xq344.html -->

<xsl:template match="wine">

 <xsl:variable name="bodyTextSize">10pt</xsl:variable>

 <xsl:apply-templates select="winery"/>
 <i>

 <xsl:apply-templates select="product"/>
 </i>

 <xsl:apply-templates select="year"/>

 <xsl:apply-templates select="price"/>

</xsl:template>

<xsl:template match="winery">

 <xsl:variable name="bodyTextSize">12pt</xsl:variable>

 <xsl:apply-templates/>

 <xsl:text> </xsl:text>
 <xsl:value-of select="../@grape"/>

</xsl:template>

The way these templates assign these size values is different. Instead of one global
bodyTextSize variable to use throughout the stylesheet, the two template rules
each have their own bodyTextSize variables declared between their xsl:tem-
plate tags. The first one sets bodyTextSize to a value of “10pt”, and that’s what
gets plugged into the size attribute values for the font tags that start the prod-
uct, year, and price elements. The second template sets bodyTextSize to
VARIABLES AND PARAMETERS: SETTING AND USING 167

“12pt”, so the winery and grape element contents copied to the result tree by that
template start with font tags that have a size value of “12pt”:

Duckpond Cabernet

<i>Merit Selection</i>

1996

11.99

That’s just a toy example. The next stylesheet uses a selection of the string manipula-
tion functions available in XSLT (see section 5.7, “Strings,” page 153) to right align
the result tree versions of the color elements in this document:

<test>

<color>red</color>
<color>blue</color>

<color>yellow</color>
</test>

The fieldWidth global variable stores the desired column width. The goal is to
add spaces before each color value so that the spaces plus the color name add up to
this value.

The color element’s template rule has two local variables:

• The value-length variable stores the length of the color name using the
string-length() function.

• The padding variable stores the number of spaces required to right-align the
color name. It does so by subtracting the value of the local valueLength vari-
able from the global fieldWidth variable.

Once the template rule knows how much space it needs to add to the result tree
before adding the color element’s contents, it adds that many spaces, using the
substring() function to pull the necessary spaces out of a string of spaces passed
to the substring() function as its first argument:

<!-- xq346.xsl: converts xq345.xml into xq478.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output omit-xml-declaration="yes"/>

 <xsl:variable name="fieldWidth">12</xsl:variable>

 <xsl:template match="color">

 <xsl:variable name="valueLength"
 select="string-length(.)"/>

 <xsl:variable name="padding"
 select="$fieldWidth - $valueLength"/>

 <xsl:value-of

 select="substring(' ',1,$padding)"/>
 <xsl:value-of select="."/>

 </xsl:template>
</xsl:stylesheet>
168 CHAPTER 5 PROGRAMMING ISSUES

In the result, “red” has nine spaces before it, “blue” has eight, and “yellow” has six:

 red

 blue
 yellow

I could have done this without any local variables; in fact, when I originally wrote this
stylesheet, I did. As with any programming language, using local variables made it
easier to break down the problem into pieces and to make the relationship of those
pieces easier to understand.

5.8.2 Parameters

The xsl:param instruction is just like xsl:variable, with one important dif-
ference: its value is only treated as a default value and can be overridden at runtime.
All the stylesheet examples in section 5.8.1, “Variables,” page 164, would work the
same way if you substituted xsl:param elements for their xsl:variable ele-
ments, but you would have the option of overriding the values when calling their
templates.

For instance, let’s take an example from that section and make the substitution.
Here is how it looks as a complete stylesheet:

<!-- xq348.xsl: converts xq338.xml into xq339.html.

 Compare this with xq340.xsl. -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:output method="html"/>

<xsl:param name="bodyTextSize">10pt</xsl:param>

 <xsl:template match="winery">
 <xsl:apply-templates/>

 <xsl:text> </xsl:text>
 <xsl:value-of select="../@grape"/>

 </xsl:template>

 <xsl:template match="product">

 <i>
 <xsl:apply-templates/></i>

 </xsl:template>

 <xsl:template match="year | price">
 <xsl:apply-templates/>

 </xsl:template>

</xsl:stylesheet>

If we run the stylesheet as shown with the same source document, it produces the
same result as the previous section’s version, which used xsl:variable instead of
xsl:param:

Duckpond Cabernet

VARIABLES AND PARAMETERS: SETTING AND USING 169

<i>Merit Selection</i>

1996

11.99

However, if we pass the stylesheet a value of “8pt” to use for bodyTextSize, it sub-
stitutes this new value for all uses of this parameter:

Duckpond Cabernet

<i>Merit Selection</i>

1996

11.99

Of course, I’m skimming over one important detail here: how do you pass the alter-
native value for the parameter to the stylesheet? The official XSLT spec doesn’t tell us.
In fact, it deliberately tells us that it’s not going to tell us. Just as the W3C’s XSL
Working Group wanted to leave the potential methods for giving input to and get-
ting output from an XSLT processor as open as possible, they also didn’t want to limit
how the processors will be told of a new value for a global parameter setting. (As we’ll
see, not all parameters are global like the bodyTextSize one above. They can also
be local to template rules.) So, it’s up to the particular XSLT processor’s designer. To
pass the new value of “8pt” to the stylesheet when using the Saxon XSLT processor,
the command line might look like this:

java com.icl.saxon.StyleSheet -x org.apache.xerces.parsers.SAXParser

 -y org.apache.xerces.parsers.SAXParser xq338.xml
 xq348.xsl bodyTextSize=8pt

(This is actually one command split over three lines to fit on the page here. When
using Saxon or any other Java-based XSLT processor, you would make your life easier
if you stored everything before the “xq338.xml” in that command line in a Windows
batch file, a UNIX shell script, or your operating system’s equivalent. Then, you can
pass it the important parameters each time you run it, with no need to type the full
Java library names for the XSLT processor and XML parser. See appendix B, “Run-
ning XSLT processors” on page 269 for more.)

The only difference between applying the xq348.xsl stylesheet to the xq338.xml
document this way and running it with the bodyTextSize default value is the addi-
tion of the “bodyTextSize=8pt” part at the end. Other XSLT processors may require
a different syntax when passing a new parameter value along from the command line,
but they still create the same result when using this stylesheet and input.

Local parameters are even more useful in template rules than XSLT local vari-
ables, because the flexibility of passing one or more values to a template lets that tem-
plate adapt to different situations. Named templates that don’t take advantage of this
can still operate as functions or subroutines, but when you use named templates that
do, you can start treating XSLT like a real programming language. For example, the
ability of named templates to call themselves with parameters allows recursion and all
the power associated with it.
170 CHAPTER 5 PROGRAMMING ISSUES

How we pass a new value to a template rule’s local parameter isn’t quite the open
question that it is with global parameters, because XSLT provides the xsl:with-
param instruction for just this purpose. You can use this element in an xsl:apply-
templates element to assign a new value to a parameter in a template being applied,
but it’s more commonly used when calling a named template with the xsl:call-
template instruction. For example, the first template rule in the following stylesheet
has a name attribute and not a match attribute. Instead of the XSLT processor look-
ing for nodes where it can apply this template, the processor will wait until the tem-
plate is explicitly called with an xsl:call-template instruction.
 <!-- xq352.xsl: converts xq353.xml into xq354.html -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:template name="titles">
 <xsl:param name="headerElement">h4</xsl:param>

 <xsl:element name="{$headerElement}">
 <xsl:apply-templates/>

 </xsl:element>
 </xsl:template>

 <xsl:template match="chapter/title">

 <xsl:call-template name="titles">
 <xsl:with-param name="headerElement">h1</xsl:with-param>

 </xsl:call-template>
 </xsl:template>

 <xsl:template match="section/title">

 <xsl:call-template name="titles">
 <xsl:with-param name="headerElement" select="'h2'"/>

 </xsl:call-template>
 </xsl:template>

 <xsl:template match="para">
 <p><xsl:apply-templates/></p>

 </xsl:template>

 <xsl:template match="chapter">

 <html><body><xsl:apply-templates/></body></html>
 </xsl:template>

</xsl:stylesheet>

(Note how the stylesheet has no xsl:output element with a method setting of
“html.” Because the document element of the result tree is html, the XSLT processor will
assume an output method of “html.”) The second and third template rules, which have
match patterns of “chapter/title” and “section/title”, call the first template by its name of
“titles”, using xsl:call-templates elements. These xsl:call-templates
elements don’t need any children, but they have them here: xsl:with-param ele-
ments to pass parameter values to the named templates. The “titles” template rule will use
these values to override the default value of “h4” when it’s called. The with-param
instruction in the “chapter/title” template rule is saying “pass along the value ‘h1’ for the
VARIABLES AND PARAMETERS: SETTING AND USING 171

headeElement parameter,” and the one in the “section/title” template rule is passing
the value “h2”. For this input document,

<chapter><title>Chapter 1</title>
 <para>Then with expanded wings he steers his flight</para>

 <para author="ar">Aloft, incumbent on the dusky Air</para>
 <section><title>Chapter 1, Section 1</title>

 <para>That felt unusual weight, till on dry Land</para>
 <para>He lights, if it were Land that ever burned</para>

 </section>
</chapter>

the “titles” template rule is called when the XSLT processor finds each of the two
title element nodes. The “titles” named template uses the passed values to create
the h1 and h2 elements in the result:

<html>

 <body>
 <h1>Chapter 1</h1>

 <p>Then with expanded wings he steers his flight</p>
 <p>Aloft, incumbent on the dusky Air</p>

 <h2>Chapter 1, Section 1</h2>
 <p>That felt unusual weight, till on dry Land</p>

 <p>He lights, if it were Land that ever burned</p>
 </body>

</html>

Just as an xsl:param element can specify its default value as either content
between its start- and end-tags or as the value of a select attribute, the
xsl:with-param element can indicate the value to pass using either method. The
two xsl:with-param elements in the example above use the two different meth-
ods to demonstrate this.

The XSLT processor evaluates the xsl:with-param element’s select value
as an expression just as it does with the xsl:param element’s select attribute
value. This is why the third template, shown previously, needs single quotation marks
around the value of “h2” even though it’s also enclosed by double quotation marks.
The double quotation marks serve a different purpose: to tell the XML parser where
the select attribute value starts and ends. The inner single quotation marks tell the
XSLT processor that the value is a literal string and not an expression to evaluate.

������� The name value specified in the xsl:call-template element cannot
contain a variable reference. For example, if you declared a variable called
templateName and stored the string “title” there, an xsl:call-tem-
plate start-tag of <xsl:call-template name="$templateName">

would not work in the previous example’s “chapter/title” or “section/title”
template rules.
172 CHAPTER 5 PROGRAMMING ISSUES

You don’t have to specify a hard-coded string such as “h1” or “h2” as the value of the
parameter to pass in an xsl:with-param element. You can put the result of one or
more functions in there, or even an XPath expression that retrieves a value from
somewhere in the document (or even from another document, using the docu-
ment() function). This ability opens up an even broader range of possibilities for
how you use parameter passing in XSLT.

For related information, see:
• section 5.1.3, “‘For’ loops, iteration,” on page 118, for examples of the power of

recursion using xsl:param elements.
• section 5.3, “Named templates,” page 132

• section 5.8.1, “Variables,” page 164
• appendix B, “Running XSLT processors” on page 269, for more on different

ways to pass parameters to different XSLT processors.

5.9 DECLARING KEYS AND PERFORMING LOOKUPS
When you need to look up values based on some other value—especially when your
stylesheet needs to do so a lot—XSLT’s xsl:key instruction and key() function
work together to make it easy. They can also make it fast. To really appreciate the use
of keys in XSLT, however, let’s first look at one way to solve this problem without
them. Let’s say we want to add information about the shirt elements in the following
document to the result tree, with color names instead of color codes in the result.

<shirts>

<colors>
<color cid="c1">yellow</color>

<color cid="c2">black</color>
<color cid="c3">red</color>

<color cid="c4">blue</color>
<color cid="c5">purple</color>

<color cid="c6">white</color>
<color cid="c7">orange</color>

<color cid="c7">green</color>
</colors>

<shirt colorCode="c4">oxford button-down</shirt>

<shirt colorCode="c1">poly blend, straight collar</shirt>
<shirt colorCode="c6">monogrammed, tab collar</shirt>

</shirts>

We want the output to look like this:

blue oxford button-down
yellow poly blend, straight collar

white monogrammed, tab collar

The following stylesheet has an xsl:value-of instruction that uses an XPath
expression to retrieve the contents of the colors element’s appropriate color
DECLARING KEYS AND PERFORMING LOOKUPS 173

child. It does so by finding, for each shirt element, the color element whose cid
attribute value matches the shirt element’s color attribute value. (For example,
the stylesheet takes the color value of “c4” for the first shirt element and searches
through the colors element’s color children to find one with a cid attribute that
has that same value: the one with “blue” as its contents.) Above that xsl:value-
of element, an xsl:variable instruction sets the shirtColorCode variable
equal to the shirt element’s color attribute value. The XPath expression has a
predicate of [@cid = $shirtColorCode] to get only the color element whose
cid attribute has the same value as the shirtColorCode variable.
<!-- xq489.xsl: converts xq479.xml into xq490.txt -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="text"/>

<xsl:template match="shirt">

<xsl:variable name="shirtColorCode" select="@colorCode"/>

<xsl:value-of
select="/shirts/colors/color[@cid = $shirtColorCode]"/>

<xsl:text> </xsl:text><xsl:apply-templates/><xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match="color"/>

</xsl:stylesheet>

This produces the desired output, but the complexity of the XPath expression means
that, if you have a lot of shirt elements whose colors need to be looked up, creating
the result tree could go slowly. Declaring and using keys can make the lookup go
much faster, because an XSLT processor that sees that you’ve declared a key usually
sets up an index in memory to speed these lookups. In this way you can produce the
same result as the previous stylesheet, much more efficiently.

The next stylesheet does the same thing as the previous one by using the
xsl:key instruction to declare the nodes and values used for the color name lookups
and the key() function to actually perform the lookups.
<!-- xq481.xsl: converts xq479.xml into xq480.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>

<xsl:key name="colorNumKey" match="color" use="@cid"/>

<xsl:template match="colors"/>

<xsl:template match="shirt">
<xsl:value-of select="key('colorNumKey',@color)"/>

<xsl:text> </xsl:text><xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>
174 CHAPTER 5 PROGRAMMING ISSUES

The xsl:key element has three attributes:

• The name attribute holds the name of the lookup key. The key() function uses
this name to identify what kind of lookup it’s doing.

• The match attribute holds a match pattern identifying the collection of nodes
where the lookups will take place. In the example, the color elements are this
collection. The fact that they are enclosed by a colors element gives the source
document a little more structure, but it’s not necessary for the key lookups to work.

• The use attribute specifies the part or parts of the match attribute’s collection
of nodes that will be used to find the appropriate node—in other words, the
attribute specifies the index of the lookup. In the example, this index is the cid
attribute of the color elements, because a lookup will pass along a color ID
string to look up the corresponding color.

Figure 5.2 shows the four steps that take place for one particular lookup:

1 The xsl:value-of element for the shirt template has a key() function that
says “pass the colorCode attribute value to the colorNumKey key to get this
value.”

2 For the oxford button-down shirt element, this value is “c4”.

3 The colorNumKey element sends the XSLT processor to look for this value in
the cid attributes of the color elements.

4 It finds it and returns the element's value for the xsl:value-of element to
add to the result tree.

Figure 5.2 Using an xsl:key element and key() function
DECLARING KEYS AND PERFORMING LOOKUPS 175

If these color IDs and names were in a table, you could think of the table as the “col-
orNumKey” lookup table, the nodes named by the match attribute as the rows of
the table, and the value or values named by the use attribute as the index field (or
fields) of the table.

These color elements would fit nicely into a table, but the beauty of doing so
with XSLT (and XML) is that the elements named by your match attribute can have
much more complex structures than any relational database table row. You have the
full power of XML available, and the ability to use an XPath expression in the use
attribute lets you identify any part of that structure you want to use as the lookup key.

The key() function performs the actual lookup. This function takes a value,
searches through the keys for one whose use value equals the one it’s looking for, and
returns the element or elements that have that key value. The example’s template rule
for the shirt elements calls this function to insert the color name before each shirt
element’s contents. The two arguments the template rule passes to this function are the
name of the key (“colorNumKey”, the name of the lookup “table”), and the value nec-
essary to look up the needed value (the shirt element’s colorCode attribute value).

Because the key() function returns the node or nodes that the lookup found,
you can use the function call as part of an XPath expression to pull an attribute value,
subelement, or other subnode out of the returned node. For example, if the color
elements had a PMSnum attribute, and you wanted to insert this attribute value instead
of the color elements’ actual content, you could use a value of “key(’color-
NumKey’,@color)/@PMSnum” for the xsl:value element’s select attribute.
Because the entire color node was used in the example above, its character data con-
tents (the part between the color start- and end-tags) are added to the result tree.

Let’s experiment with this color lookup table a little more. The following tem-
plate demonstrates several things you can do with declared keys in XSLT using the
same shirts source document as the last example:

<!-- xq482.xsl: converts xq479.xml into xq483.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>

<xsl:key name="colorNumKey" match="color" use="@cid"/>

<xsl:key name="colorKey" match="color" use="."/>

<xsl:variable name="testVar">c4</xsl:variable>

<xsl:variable name="keyName">colorKey</xsl:variable>

<xsl:template match="colors">

Looking up the color name with the color ID:

c3's color: <xsl:value-of select="key('colorNumKey','c3')"/>

c4's color: <xsl:value-of select="key('colorNumKey',$testVar)"/>

c8's color: <xsl:value-of select="key('colorNumKey','c8')"/>

c7's colors:
176 CHAPTER 5 PROGRAMMING ISSUES

<xsl:for-each select="key('colorNumKey','c7')">

<xsl:value-of select="."/><xsl:text> </xsl:text>
</xsl:for-each>

Looking up the color ID with the color name:

blue's cid: <xsl:value-of select="key('colorKey','blue')/@cid"/>

black's cid: <xsl:value-of select="key($keyName,'black')/@cid"/>

gray's cid: <xsl:value-of select="key('colorKey','gray')/@cid"/>

</xsl:template>

<!-- Don't bother outputting shirt contents for this example. -->

<xsl:template match="shirt"/>

</xsl:stylesheet>

Before discussing what the template does, let’s look at the result it creates:

Looking up the color name with the color ID:

c3's color: red

c4's color: blue

c8's color:

c7's colors:
orange green

Looking up the color ID with the color name:

blue's cid: c4

black's cid: c2

gray's cid:

The first three xsl:value-of instructions use the same “colorNumKey” key as the
previous example. The first xsl:-value-of instruction passes the literal string
“c3” as the index value to look up. The result shows that “c3” is the key for the color
“red”. The second shows how a variable can be used for this argument to the key()
function: an xsl:variable instruction near the beginning of the stylesheet
declares a testVar variable with a value of “c4”, and when the XSLT processor uses
this variable to look up a color name, the result shows the color “blue”.

The third xsl:value-of instruction in the stylesheet passes the string “c8” to
use for the lookup. No color element exists here with a cid attribute value of “c8”,
so nothing shows up in the result tree after “c8’s color:”.

The next part of the template looks up the value “c7”. The document has two
color elements with a cid value of “c7”, so the template uses an xsl:for-each
instruction instead of an xsl:value-of instruction to add both to the result tree.
(If the template had used xsl:value-of, only the first would have appeared in the
result.) A key() function can return multiple nodes, and this one does, so the
xsl:for-each instruction iterates through the “c7” nodes, printing the value and
a space (using an xsl:text element for the latter) for each.
DECLARING KEYS AND PERFORMING LOOKUPS 177

The beginning of this stylesheet declares two keys: the “colorNumKey” is the
same one we saw in the previous stylesheet; and the second key, “colorKey”, is used
by the remaining xsl:variable instructions in this new stylesheet. Its use
attribute names the color elements’ contents (“.”) as the lookup index. Each of the
three xsl:value-of elements pass this key a color name to look up the node
instead of passing a string to match against the color elements’ cid values. The
entire color node still gets returned, and these three xsl:value-of elements each
pull cid attribute value out of this node by adding a slash and “@cid” to make a sec-
ond location step for the XPath expression in each xsl:value-of element’s
select attribute.

So, instead of passing a color ID value to get a color name, these last three lookups
are each passing a color name to get a color ID. They’re looking up the same type of
node in the same set of nodes using a different part of those nodes as the lookup index.
Getting back to the table analogy, it’s similar to looking up rows in the same table as
before, but using a different column as the key field.

The first of these last three lookups passes the string “blue”, and the XSLT pro-
cessor adds “c4” as the corresponding color ID to the result tree. The second passes
the string “black”, but unlike any of the lookups before, this one identifies the key
name by using a variable instead of a hard-coded string: $keyName, which was set
to “colorKey” near the beginning of the stylesheet. This causes no problems, and the
“c2” color ID corresponding to “black” is added to the result tree.

The last key() function call tries to look up the color name “gray”. None exists
in the key. The function returns nothing, and nothing is added after the text node
“gray’s cid” in the result tree.

The lookup keys don’t have to be in the same document as the elements that trig-
ger the lookup. If the example document’s colors element had been in a separate
document in a separate file, you could still declare its contents as a key and use it for
looking up the shirt colors in this document. This ability to look up something in
an external data source lets you develop some powerful document processing systems.
(See section 6.3, “Multiple input documents,” page 195, for information on reading
in a second file and using that file’s contents as a lookup key.)

5.10 FINDING THE FIRST, LAST, BIGGEST, AND SMALLEST
If you can describe a set of nodes from a document with a single-step XPath expression
then you can get the first of those nodes by adding a predicate of [1] to that expres-
sion, and you can find the last node by adding a predicate of [last()].

To demonstrate, let’s look at the titles in the following chapter document.
When processing the document, the XPath expression descendant::title con-
tains all of the title elements within the chapter element, whether they’re chil-
dren, grandchildren, or descendants of the grandchildren:

<chapter><title>"Paradise Lost" Excerpt</title>

<para>Then with expanded wings he steers his flight</para>
178 CHAPTER 5 PROGRAMMING ISSUES

<figure><title>"Incumbent on the Dusky Air"</title>

<graphic fileref="pic1.jpg"/></figure>
<para>Aloft, incumbent on the dusky Air</para>

<sect1>
<para>That felt unusual weight, till on dry Land</para>

<figure><title>"He Lights"</title>

<graphic fileref="pic2.jpg"/></figure>

<para>He lights, if it were Land that ever burned</para>
<sect2>

<para>With solid, as the Lake with liquid fire</para>
<figure><title>"The Lake with Liquid Fire"</title>

<graphic fileref="pic3.jpg"/></figure>
</sect2>

</sect1>
</chapter>

The following template lists the first and last title elements in the chapter docu-
ment by adding the [1] and [last()] predicates to that XPath expression:

<!-- xq358.xsl: converts xq357.xml into xq359.txt -->

<xsl:template match="chapter">
First title in chapter:

<xsl:value-of select="descendant::title[1]"/>
Last title in chapter:

<xsl:value-of select="descendant::title[last()]"/>
</xsl:template>

Although the first title element in the chapter is a child of the chapter element
and the last title element is a great-great-grandchild (being a grandchild of the
sect2 element, which is a grandchild of chapter), the template rule finds them
and adds their contents to the result tree:

First title in chapter:

"Paradise Lost" Excerpt
Last title in chapter:

"The Lake with Liquid Fire"

Why doesn’t this work with a multi-step XPath expression? Because a predicate in an
XPath location step is only applied to the nodes in that location step. For example,
let’s say we want the last title of the last figure element in the chapter shown
above. The XPath expression in the following template won’t do it:

<!-- xq360.xsl: converts xq357.xml into xq361.txt -->

<xsl:template match="chapter">
Last figure title in chapter?

<xsl:value-of select="descendant::figure/title[last()]"/>

No.
</xsl:template>

The [last()] predicate here isn’t asking for the last figure title in the chapter; it’s
looking for the last title element within each figure element. Each figure ele-
FINDING THE FIRST, LAST, BIGGEST, AND SMALLEST 179

ment has only one title, so the expression returns a node list of all those figure
elements’ title elements. When the xsl:value-of instruction converts a node
list to a text node for the result tree, it only gets the first one, so we see the first fig-
ure element’s title element in the result:

Last figure title in chapter?

"Incumbent on the Dusky Air"
No.

What if we really do want the title of the last figure element in the chapter?
The secret to getting the first or last node of a node list described by a more complex
XPath expression is to have an xsl:for-each instruction get the list of nodes in
question, and then get the last (or first) one in that list.

For example, the following template rule has an xsl:for-each instruction
going through the title elements of all figure elements descended from the con-
text node. As the xsl:for-each instruction goes through them, one xsl:if ele-
ment inside the xsl:for-each instruction checks whether the node is first in this
list, and, if so, it adds a message about this to the result tree. A second xsl:if element
does the same for the last node in the list:

<!-- xq362.xsl: converts xq357.xml into xq363.txt -->

<xsl:template match="chapter">

<xsl:for-each select="descendant::figure/title">

<xsl:if test="position() = 1">

First figure title in chapter: <xsl:value-of select="."/>
</xsl:if>

<xsl:if test="position() = last()">
Last figure title in chapter: <xsl:value-of select="."/>

</xsl:if>

</xsl:for-each>

</xsl:template>

The result shows just what we wanted: the title of the first figure element in the
document and the title of the last figure element in the document:

First figure title in chapter: "Incumbent on the Dusky Air"

Last figure title in chapter: "The Lake with Liquid Fire"

What if we wanted the figure titles that were the first and last alphabetically? We sim-
ply add an xsl:sort instruction inside the xsl:for-each element:

<!-- xq364.xsl: converts xq357.xml into xq365.txt -->

<xsl:template match="chapter">

<xsl:for-each select="descendant::figure/title">

<xsl:sort/>

<xsl:if test="position() = 1">
180 CHAPTER 5 PROGRAMMING ISSUES

First figure title in chapter: <xsl:value-of select="."/>

</xsl:if>

<xsl:if test="position() = last()">

Last figure title in chapter: <xsl:value-of select="."/>
</xsl:if>

</xsl:for-each>

</xsl:template>

The result shows the first and last entries from an alphabetically sorted list of figure
titles:

First figure title in chapter: "He Lights"
Last figure title in chapter: "The Lake with Liquid Fire"

(Because the xsl:sort instruction has no select attribute to identify a sort key, a
default sort key of “.” is used, which uses the string-value of the current node—in this
case, the nodes that the xsl:for-each element is counting through—as the sort
key. (See section 6.7, “Sorting,” page 215, for more on ways to control sorting.)

In addition to using the xsl:sort instruction to find the first and last values
alphabetically, you can use it to find the first and last or greatest and smallest values
for any sort key. For example, let’s say we want to know who has the highest and lowest
salaries of all the employees in the following list:

<employees>

<employee hireDate="04/23/1999">

<last>Hill</last>
<first>Phil</first>

<salary>100000</salary>
</employee>

<employee hireDate="09/01/1998">
<last>Herbert</last>

<first>Johnny</first>
<salary>95000</salary>

</employee>

<employee hireDate="08/20/2000">
<last>Hill</last>

<first>Graham</first>
<salary>89000</salary>

</employee>

</employees>

The following template rule sorts the employee elements within the employees
element by their salary, with a data-type attribute telling the XSLT processor
to treat the salary values as numbers and not as strings. (Otherwise, a salary of
“100000” would come before a salary of “89000”.) As with the previous example,
two xsl:if elements add messages to the result for the first and last nodes in the list
as the xsl:for-each instruction counts through the nodes:
FINDING THE FIRST, LAST, BIGGEST, AND SMALLEST 181

<!-- xq367.xsl: converts xq366.xml into xq368.txt -->

<xsl:template match="employees">
<xsl:for-each select="employee">

<xsl:sort select="salary" data-type="number"/>

<xsl:if test="position() = 1">
Lowest salary: <xsl:apply-templates/>

</xsl:if>

<xsl:if test="position() = last()">
Highest salary: <xsl:apply-templates/>

</xsl:if>

</xsl:for-each>

</xsl:template>

Because this list is sorted numerically by employee salary, the result tells us which
employees have the lowest and highest salaries:

Lowest salary:

Hill
Graham

89000

Highest salary:

Hill
Phil

100000

If the employees’ salary figures were stored in an attribute instead of in an element,
finding the largest and smallest salary figures would be the same, except that the tem-
plate would sort the employee elements using the salary attribute value as a sort
key instead of the salary child element. For anything you can sort on, you can
always find the first or last values of the sorted list. This makes it easy to find the big-
gest, smallest, earliest, latest, or whatever values the first and last entries of that sorted
list represent.

5.11 USING THE W3C XSLT SPECIFICATION

The W3C’s XSLT Recommendation (available at http://www.w3.org/TR/xslt) is a
specification describing the XSLT language and the responsibilities of XSLT proces-
sors. If you’re new to XSLT, the Recommendation can be difficult to read, especially if
you’re not familiar with W3C specifications in general and the XML, XPath, and
Namespaces specs in particular.

This chapter summarizes some of the concepts and terms most likely to confuse
an XSLT novice reading the XSLT Recommendation. Much of this material is available
in other parts of the book, especially in part 1 and the glossary, but as a centralized col-
lection of it, this section provides a companion to the W3C specification for beginners
who want to tackle XSLT’s primary reference.
182 CHAPTER 5 PROGRAMMING ISSUES

But first, what do we mean by “Recommendation”? The W3C can’t force anyone
to do anything, so they call a specification that has been through their whole process
of drafts, reviews, discussions, revisions, and final approval a “Recommendation.”

The first step on this path is Working Draft status. A Working Draft comes
from either a submission by a W3C member company or from a Working Group
formed by the W3C to work on the specification. Further work is done by a Working
Group that makes the draft public at various stages for comments from both within
and outside of the W3C. The beginning of each specification describes where to send
comments and where on the web to read comments that have been sent so far. (See
http://www.w3org/TR for links to all the specs in any stage of W3C consideration.)

When the Working Group feels that the Working Draft is ready, they submit it
to the W3C director for possible promotion to Candidate Recommendation status.
This used to be the last stop before becoming an official Recommendation, but the
W3C has recently added a new penultimate stage: Proposed Recommendation. The
Candidate Recommendation stage is now the time when application developers are
encouraged to implement the spec, and if all goes well, the Candidate Recommenda-
tion becomes a Proposed Recommendation. If everyone (in the W3C, that is) is happy
with the Proposed Recommendation at that point, it becomes a Recommendation.
XSLT 1.0 reached this point on November 16th, 1999.

W3C specs are generally specifications for software behavior aimed at program-
mers. They rarely include tutorials and can be tough to read whether you jump in
somewhere in the middle or start from the beginning. Like most W3C specs, the
XSLT Recommendation has confusing terms that get used often. Even more confus-
ing are the pairs of terms just similar enough to make them easy to mix up.

5.11.1 Pairs of confusing related terms

document element and document root For an XML document to be well formed,
the last tag must be an end-tag corresponding to the start-tag that starts the whole
thing—in other words, one single element must enclose all the other elements. We
call that element the document element. If a DOCTYPE declaration exists, it names
the element type of that document element. If you picture a tree of the document’s
elements, that element would be the root of that tree. But, remember, other kinds of
trees can represent a document, such as a DOM tree or the source and result trees
used in XSLT. These trees have their own root node, and the node representing the
document element is a child of that root. This way, if the document has comments or
processing instructions outside of the document element, they can still be represented
as part of the document tree, as sibling nodes of the document element node.

expression and pattern In XSLT, an XPath expression uses the XPath language to
describe a set of nodes. Patterns, which specify a set of conditions a node must meet,
use a subset of XPath expression syntax that limits you to using the child and
attribute axes. Because expressions are discussed more often, it can be confusing
USING THE W3C XSLT SPECIFICATION 183

to see something like “wine[@year='1999']” referred to as a pattern when it looks like
an XPath expression. It is an XPath expression in addition to being a pattern, but if
it’s being used as the match value of an xsl:template element or an xsl:key
element, or as the count or from attribute of an xsl:number element, it’s acting
as a match pattern.

node and element, tree and document Computer programs use tree-like structures
to represent a lot of things. In fact, several different ways exist for trees to represent
the same XML document: to show its entity structure; to show its element structure;
or to appear as a Document Object Model (DOM) tree. In trees used to store an XML
document for processing with an XSLT stylesheet, the nodes, or components, can be
element nodes, attribute nodes, text nodes, processing instruction nodes, comment
nodes, or namespace nodes. For most documents, most of the nodes are element
nodes, so nodes and elements can seem almost synonymous at times. For example, to
find a sibling element (an element with the same parent as the context node), you’ll
want a sibling node (a node with the same parent as the one in question) that happens
to be an element node.

template and template rule A template rule consists of two parts: a pattern
matched against the source tree nodes, and a template that gets added to the result tree
for each node that matches that pattern. In an XSLT stylesheet, xsl:template ele-
ments represent template rules; the value of these elements’ match attributes are the
patterns to match against the source tree nodes; and the elements’ content (the part
between the xsl:template elements’ start- and end-tags) are the templates. The
fact that an xsl:template element doesn’t represent an XSLT template, but
instead represents a template rule, adds to the confusion.

XSLT elements and instructions Using XSLT is about learning how to use the ele-
ments from the XSLT namespace such as xsl:template, xsl:apply-templates,
and xsl:output. XSLT elements such as xsl:apply-templates, xsl:text,
and xsl:element that tell the XSLT processor to add something to the result tree
are sometimes called instructions. Since most XSLT elements are instructions, the
terms can sometimes seem to mean the same thing, but some XSLT elements aren’t
instructions: “top-level” elements such as xsl:output and xsl:strip-space
give more general instructions to the XSLT processor about how to perform the
transformation.

URL and URI “URI” stands for Uniform Resource Identifiers, the system for nam-
ing resources on the web. Web address URLs such as http://www.snee.com are the
most common form of URIs. For now, URIs that aren’t URLs are so rare that the
terms “URI” and “URL” are practically synonymous.
184 CHAPTER 5 PROGRAMMING ISSUES

5.11.2 Other confusing terms

context node An XPath term. In XSLT, a context node generally refers to the source
tree node currently being processed by the XSLT processor. Inside an xsl:for-
each loop, the context node is the one currently being processed by the loop. In a
template rule (and outside of an xsl:for-each loop), it’s usually the node that
matched the pattern in the xsl:template element’s match attribute to trigger the
template rule.

expanded-name An expanded-name is an attribute or element’s name and its name-
space URI (if this namespace isn’t null) taken together. For the xsl:stylesheet
element, the expanded-name would be “http://www.w3.org/1999/XSL/Transform”
and “stylesheet.”

instantiate In the world of object-oriented development, a class declaration
describes the structure and behavior of a particular class of objects. When one of these
objects (also known as an “instance” of that class) is created in memory, we say that
it is “instantiated.” In XSLT, a template describes the structure of something that may
be added to the result tree, and when an instance of that template is added to the result
tree, we also say that the template is “instantiated.”

location step An XPath expression consists of one or more location steps separated
by slashes. Each location step can have up to three parts: an axis specifier, a required
node test, and an optional predicate. The XPath expression “child::wine” has one step,
and “wines/wine/attribute:year” has three. (See section 2.1, “Location paths, axes,
node tests, and predicates,” page 24, for more information.)

NCName The XSLT specification describes many components of XSLT syntax as
“NCNames,” a term that comes from the W3C namespace specification. To simplify
a little, an NCName is any name that begins with a letter or underscore and has no
space or colon in it (“NC” = No Colon”). It can’t have a colon because it may have
a namespace prefix added to its beginning. Namespace prefixes themselves are also
defined as NCNames. Because the prefix and the part after it are connected by a colon,
a colon within these names would confuse a processor trying to figure out where the
prefix ended and the other part began, so they both must be “No Colon” names. (See
also QName on page 186.)

NameTest A NameTest is an XPath term used to show where you can put

• the name of an element type or attribute, with or without a namespace prefix

• an asterisk as a wildcard representing any name

• a namespace prefix followed by a colon and an asterisk, representing any name in
a particular namespace

For example, when the XSLT spec tells you that the xsl:strip-space element
has an elements attribute where you list the elements whose extra whitespace
USING THE W3C XSLT SPECIFICATION 185

nodes you want stripped, it doesn’t actually tell you to list elements there, but instead
tells you that it’s a list of NameTests to show that all the possibilities described by the
list above are legal in this attribute.

node-set-expression A node-set-expression is an XPath expression describing a set
of nodes.

QName A QName is a “Qualified Name” that includes an optional namespace pre-
fix and colon before a required “local part,” which is an NCName. For example, the
value of an xsl:template element’s name attribute is a QName. A QName can
be a simple name, such as “indexTemplate”, or it can include a namespace prefix and
colon, as with “snee:indexTemplate”.

token, nmtoken To a parser (that is, to a program that reads in text and has to figure
out what its pieces are and how they’re related), a token is the smallest string of char-
acters that can function as a unit. An element name, the “<?” that starts a processing
instruction, a variable name, and the word “if” in a C or Java program are all tokens.

In XML, an nmtoken (name token) is a token composed of the characters that
are allowed for names according to the XML spec: basically, letters, digits, the period,
hyphen, underscore, and colon, with no whitespace splitting the name up. (Compare
with “NCName,” on page 185.) A lot of places in XML-related specs such as the
XSLT Recommendation say “token” or “nmtoken” instead of saying “some name that
you or someone made up goes here”.

top-level A top-level element is a special XSLT stylesheet element (an element from
the http://www.w3.org/1999/XSL/Transform namespace) that is a child of the style-
sheet’s xsl:stylesheet document element. Except for the xsl:template ele-
ment, which specifies a template rule for the stylesheet, the others specify general
instructions about the stylesheet, such as global variables, other stylesheets to import,
and instructions about the format of the result document. Nearly all XSLT elements
that are not top-level elements are used in the templates inside the template rules.

The XSLT spec also refers to top-level variables, which are variables that are glo-
bal across the stylesheet so that they can be referenced from within any stylesheet ele-
ment. (A template rule can also have its own local variables that can be referenced only
from within that template rule. (See section 5.8.1, “Variables,” page 164, for more on
using variables in stylesheets.)
186 CHAPTER 5 PROGRAMMING ISSUES

C H A P T E R 6

Specialized input & output

6.1 HTML and XSLT 187
6.2 Browsers and XSLT 192
6.3 Multiple input documents 195
6.4 Using modes to create tables

of contents and other
generated lists 199

6.5 Non-XML output 202
6.6 Numbering, automatic 205
6.7 Sorting 215
6.8 Stripping all markup from a

document 224

6.9 Valid XML output: including
DOCTYPE declarations 225

6.10 XML declarations 228
6.11 Whitespace: preserving and

controlling 229
6.12 Generating IDs and links 243
6.13 XSL and XSLT: creating

Acrobat files and other
formatted output 247

6.14 Splitting up output into
multiple files 253
6.1 HTML AND XSLT

If your application is reading or writing the HTML flavor known as XHTML (a W3C
standard form of HTML that follows all the rules of XML—documents are well-
formed, empty elements have start- and end-tags or closing slashes, and entities
besides XML’s five predefined ones are explicitly declared), then you have nothing to
worry about. XHTML is perfectly good XML just like anything else that XSLT can
read or write. If your application is reading older legacy HTML or outputting HTML
for use in older browsers, however, you should keep in mind a few small problems, as
well as some simple techniques for getting around these problems.
187

6.1.1 HTML as input

XSLT processors expect their input to be well-formed XML. HTML documents can
be well-formed, but most aren’t. For example, any Web browser would understand
the following HTML document, but a number of things prevent the document from
being well-formed:

• The html start-tag lacks a corresponding end-tag.

• The tags enclosing the h1 and body elements are not in a consistent case.

• The value of the IMG element’s SRC attribute isn’t quoted.

• The br and IMG elements’ tags have no closing slash or matching end-tags to
show that they’re empty elements.

<html>

<body>
<h1>My Heading</H1>

<p>Here is the first paragraph.
<P>Here is the second.

Second line of the second paragraph.

</BODY>

If a browsing program can still figure out what’s what in this document and display it
on a screen, it had to be inevitable that someone would write a utility to parse such a
document and output a proper well-formed version. Dave Raggett of the W3C
turned out to be that person, and, luckily, his “HTML Tidy” program is free and
available for many different platforms at http://www.w3.org/People/Raggett/tidy.
With the -asxml option added to this tidy program’s command line, telling it to
include closing slashes in empty elements, it turns the HTML document above into
the well-formed XHTML document below:

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/strict.dtd">

<html xmlns="http://www.w3.org/TR/xhtml1">
<head>

<title></title>
</head>

<body>
<h1>My Heading</h1>

<p>Here is the first paragraph.</p>

<p>Here is the second.

Second line of the second paragraph. </p>
</body>

</html>

Writing an XSLT stylesheet to process this tidied-up version is no different from writ-
ing an XSLT stylesheet to process any other well-formed XML. One XSLT trick that
188 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

comes in particularly handy when reading XHTML documents as input is the use of
numeric predicates in XPath expressions or match patterns to convert HTML td ele-
ments (“table data”—that is, the cells of an HTML table) into elements with more
meaningful names. For example, if you have an HTML table where you know that
the first column consistently shows employee last names; the second shows first
names, the third shows salaries; and the fourth shows a hire date, like this,

<html>

<body>
<table>

<tr>
 <td>Hill</td><td>Phil</td><td>100000</td><td>4/23/1999</td>

</tr>
<tr>

 <td>Herbert</td><td>Johnny</td><td>95000</td><td>09/01/1998</td>
</tr>

<tr>
 <td>Moss</td><td>Sterling</td><td>97000</td><td>10/16/2000</td>

</tr>
</table>

</body>
</html>

you can convert each of these columns of td elements to elements with names that
reflect their contents better. You can do this by using a number in square brackets to
point to the td element inside each tr element that serves the purpose you need:

<!-- xq377.xsl: converts xq376.html into xq378.xml -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes" indent="no"/>

<xsl:template match="table">
 <employees><xsl:apply-templates/></employees>

</xsl:template>

<xsl:template match="tr">

 <employee hireDate="{td[4]}">
 <last><xsl:value-of select="td[1]"/></last>

 <first><xsl:value-of select="td[2]"/></first>
 <salary><xsl:value-of select="td[3]"/></salary>

 </employee>
</xsl:template>

</xsl:stylesheet>

This simple stylesheet, with only those two template rules, converts the HTML table
above into the following more valuable XML:

<employees>
<employee hireDate="4/23/1999"><last>Hill</last>

<first>Phil</first><salary>100000</salary></employee>
HTML AND XSLT 189

<employee hireDate="09/01/1998"><last>Herbert</last>

<first>Johnny</first><salary>95000</salary></employee>
<employee hireDate="10/16/2000"><last>Moss</last>

<first>Sterling</first><salary>97000</salary></employee>
</employees>

Section 2.4, “Predicates,” on page 43, and section 3.4, “Previous, next, first, third,
last siblings,” page 53, provide more background on referring to elements by their
numeric position among their siblings.

6.1.2 HTML as output

A basic rule of XSLT is that your stylesheets must be well-formed. All tags must either
be a member of a start- and end-tag pair or an empty element tag with its closing slash.
Since the XSLT processor’s output will reflect the structure of much of the stylesheet,
this could be a problem when creating HTML to be read by older browsers. More
recent browsers may have no problem with a closing slash in empty HTML elements
such as br, hr, and img, but older browsers won’t know what to do with elements that
have this closing slash—remember, when early versions of the popular browsers were
released XML hadn’t been invented yet. (Because XHTML is an XML way to store
HTML, XHTML documents will have this closing slash in these empty elements.)

If you’re going to the trouble of converting your XML to HTML, you probably
want to ensure that the widest possible array of browsers can read the Web pages that
you’re creating, and XSLT’s xsl:output element lets you do this. By setting its
method attribute to a value of “html”, you’re telling the XSLT processor to represent
empty HTML elements (area, base, basefont, br, col, frame, hr, img,
input, isindex, link, meta and param, according to the XSLT spec) as a single
tag with no closing slash. For example:

<!-- xq380.xsl: converts xq381.xml into xq382.html -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output method="html"/>

<xsl:template match="poem">
 <html><body>

 <xsl:apply-templates/>
 </body></html>

</xsl:template>

<xsl:template match="title">

 <h1><xsl:apply-templates/></h1>
</xsl:template>

<xsl:template match="excerpt">

 <p><xsl:apply-templates/></p>
 <hr></hr>

</xsl:template>

<xsl:template match="verse">
190 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

 <xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

An XSLT processor using the stylesheet above converts this XML document

<poem><title>From Book I</title>
<excerpt><!-- I 225 - 229 -->

<verse>Then with expanded wings he steers his flight</verse>
<verse>Aloft, incumbent on the dusky Air</verse>

<verse>that felt unusual weight, till on dry Land</verse>
<verse>He lights, if it were Land that ever burne'd</verse>

<verse>With solid, as the Lake with liquid fire;</verse>
</excerpt>

<excerpt><!-- 632 - 635 -->
<verse>For who can yet believe, though after loss</verse>

<verse>That all these puissant Leginos, whose exile</verse>
<verse>Hath emptied Heav'n, shall fail to re-ascend</verse>

<verse>Self-rais'd, and repossess their native seat.</verse>
<verse></verse>

</excerpt>
</poem>

to this HTML document:

<html>

 <body>
 <h1>From Book I</h1>

 <p>
 Then with expanded wings he steers his flight

 Aloft, incumbent on the dusky Air

 that felt unusual weight, till on dry Land

 He lights, if it were Land that ever burne'd

 With solid, as the Lake with liquid fire;

 </p>
 <hr>

 <p>
 For who can yet believe, though after loss

 That all these puissant Leginos, whose exile

 Hath emptied Heav'n, shall fail to re-ascend

 Self-rais'd, and repossess their native seat.

 </p>
 <hr>

 </body>
</html>

After converting each excerpt element to a p element, the stylesheet adds an
HTML hr element for a horizontal rule. When copying each verse element to the
HTML AND XSLT 191

result tree, it adds an HTML br (“break”) element after it. Because the stylesheet
itself must be well-formed, it includes both the start- and end-tags for the hr ele-
ments, and uses a br element with a closing slash to show that it represents an
empty element. (Both empty elements could have been represented either way in
the stylesheet.)

Because of the stylesheet’s xsl:output element, the hr and br elements in the
HTML output are single tags with no closing slash, just as they were in pre-XML styles
of HTML.

The xsl:output element with a method value of “html” isn’t always neces-
sary. If your stylesheet doesn’t specify otherwise, the XSLT processor will know that
the stylesheet is creating an HTML document if the root element of your output (or,
technically, the only element child of the result tree’s root) is an html element. The
XSLT processor that sees this and isn’t directed otherwise will output hr, img, and
the other empty HTML elements as single tags without the closing slash. As with most
system development issues, being explicit is better in the long run, because it makes
your intentions that much clearer and your code therefore more understandable if you
include the xsl:output element with a method attribute of “html” when you want
your stylesheet to create old-fashioned HTML output.

For related information, see:

• section 4.5, “Processing instructions,” page 106

• section 6.5, “Non-XML output,” page 202

• section 6.8, “Stripping all markup from a document,” page 224

• section 6.9, “Valid XML output: including DOCTYPE declarations,” page 225

6.2 BROWSERS AND XSLT

Most XSLT processors offer some way to tell them “here is the source document and
here is the stylesheet to use when processing it.” For a command line XSLT processor,
the document and stylesheet are usually two different parameters to specify at the
command line.

Web browsers, however, usually read a document from a web server and have no
way to separately be told about the stylesheet to apply. To remedy this, the W3C Rec-
ommendation “Associating Style Sheets with XML Documents” describes a processing
instruction that you can put at the beginning of a document to name a stylesheet to
apply to that document. For example, a processing instruction like the one in the fol-
lowing document tells an application to apply the stylesheet xq603.xsl to that document:

<?xml version="1.0"?>

<?xml-stylesheet href="xq603.xsl" type="text/xsl" ?>
<poem>

<title>"Paradise Lost" excerpt</title>
<verse>Him thus intent <prop>Ithuriel</prop> with his spear</verse>

<verse>Touched lightly; for no falsehood can endure</verse>
<verse>Touch of Celestial temper, but returns</verse>
192 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

<verse>Of force to its own likeness: up he starts</verse>

<verse>Discovered and surprised.</verse>
</poem>

The processing instruction needs to be at the beginning of a document, unless an XML
declaration exists first, as with this example. The processing instruction in the preced-
ing example tells the application to apply the following stylesheet to the document:

<!-- xq603.xsl: converts xq602.xml into xq605.html -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="html"/>

<xsl:template match="poem">
<html><body>

<xsl:apply-templates/>
</body></html>

</xsl:template>

<xsl:template match="title">

<h1><xsl:apply-templates/></h1>
</xsl:template>

<xsl:template match="verse">
<p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match="prop">

<i><xsl:apply-templates/></i>
</xsl:template>

</xsl:stylesheet>

(If you’re using XSLT to create a document that has a processing instruction in it, see
Section 4.5, “Processing instructions,” on page 106, for information on using XSLT’s
xsl:processing-instruction instruction.) Applying the stylesheet shown to
the example document with a command line XSLT processor creates the following
result document:

<html>
<body>

<h1>"Paradise Lost" excerpt</h1>
<p>Him thus intent <i>Ithuriel</i> with his spear</p>

<p>Touched lightly; for no falsehood can endure</p>
<p>Touch of Celestial temper, but returns</p>

<p>Of force to its own likeness: up he starts</p>
<p>Discovered and surprised.</p>

</body>
</html>

The best thing about specifying a document’s stylesheet with this xml-stylesheet
processing instruction is that it lets you use the document and designated stylesheet
with a web browser.
BROWSERS AND XSLT 193

6.2.1 Internet Explorer

When Microsoft’s Internet Explorer web browser reads the preceding XML docu-
ment and XSLT stylesheet, it converts the source document to HTML according to
the stylesheet’s instructions and displays the document as if it were the result tree
HTML document, as you can see in figure 6.1

As I write this, the version of Internet Explorer that you download from Microsoft’s
web site won’t really do this. I had to download a more recent version of one compo-
nent of Internet Explorer called msxml.dll. This is the file responsible for Internet
Explorer’s XML and XSLT processing, and it hasn’t yet been incorporated into the gen-
eral distribution of their browser. As you read this, it probably is part of the standard
Microsoft browser, so no special extra steps should be necessary to read in an XML
document and transform it with a stylesheet named by this processing instruction.

6.2.2 Netscape Navigator

As I write this (a phrase I must apologize for over-using, but waiting for all of the
browser XSLT support to fall into place seems like a long wait), Netscape Navigator
has no XSLT support. The recently released Navigator 6 was based on Netscape’s
open source Mozilla browser effort. Certain releases of Mozilla did have XSLT sup-
port, but that support wasn’t carried over to the first release of Navigator 6.

Mozilla supported XSLT by incorporating an XSLT processor called Trans-
forMiiX. It used the same xml-stylesheet processing instruction as Internet
Explorer to indicate an XML document’s stylesheet. Even though full XSLT support

Figure 6.1

Internet Explorer dis-

playing an XML docu-

ment converted with

an XSLT stylesheet
194 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

from Netscape has a way to go, it’s encouraging to see both Microsoft and the
Netscape effort supporting the W3C’s syntax for linking a document to a stylesheet.

6.3 MULTIPLE INPUT DOCUMENTS

When you run an XSLT processor, you tell the processor where to find the source tree
document—probably in a disk file on a local or remote computer—as well as the
stylesheet to apply to that document. You can’t tell the processor to apply the
stylesheet to multiple input documents at once. The document() function, how-
ever, lets the stylesheet name an additional document to read in. You can insert the
whole document into the result tree or insert part of it, based on a condition
described by an XPath expression. You can even use this function with the xsl:key
instruction and key() function to look up a key value in a document outside your
source document.

To start with a simple example, let’s look at a stylesheet that copies one document
and inserts another into the result document. It will read this document

<shirts>

<shirt colorCode="c4">oxford button-down</shirt>
<shirt colorCode="c1">poly blend, straight collar</shirt>

<shirt colorCode="c6">monogrammed, tab collar</shirt>
</shirts>

and copy it to the result tree, inserting this xq485.xml document after the result ver-
sion’s shirts start-tag:

<!-- xq485.xml -->

<colors>
<color cid="c1">yellow</color>

<color cid="c2">black</color>
<color cid="c3">red</color>

<color cid="c4">blue</color>
<color cid="c5">purple</color>

<color cid="c6">white</color>
<color cid="c7">orange</color>

<color cid="c7">green</color>
</colors>

The stylesheet that does this has just two template rules. The second copies all the
source tree nodes to the result tree except the one for the shirts element, which is
covered by the first template rule:

<!-- xq486.xsl: converts xq484.xml into xq491.xml -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="shirts">
<shirts>

<xsl:apply-templates select="document('xq485.xml')"/>
MULTIPLE INPUT DOCUMENTS 195

<xsl:apply-templates/>

</shirts>
</xsl:template>

<xsl:template match="@*|node()">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

The first template rule’s second xsl:apply-templates instruction copies the
contents of a shirts element to the result tree between two shirts tags. Before
that second xsl:apply-templates instruction, however, is another xsl:apply-
templates instruction with a select attribute. This attribute’s value calls the
document() function and names the xq485.xml document as its one argument.
The function reads in this XML document and parses it as an XML document, and
the xsl:apply-templates instruction tells the XSLT processor to apply any rele-
vant template rules to it. The stylesheet’s second template is the relevant template. It
processes the xq485.xml document’s contents the same way that it processes the source
tree document’s content: copying it all to the result tree.

���	 When a stylesheet uses the document() function to read in another doc-
ument, that stylesheet can include template rules to process this other doc-
ument’s nodes as easily as it can include template rules to process the source
tree’s nodes.

Because the xsl:apply-templates instruction that uses the document() func-
tion comes after the shirts start-tag and before the xsl:apply-templates
instruction that processes the content of the source document’s shirts element, the
contents of the xq485.xml document shows up in the result after the shirts start-tag
and before the shirts element’s contents:

<shirts><!-- xq485.xml --><colors>

<color cid="c1">yellow</color>

<color cid="c2">black</color>

<color cid="c3">red</color>

<color cid="c4">blue</color>

<color cid="c5">purple</color>

<color cid="c6">white</color>

<color cid="c7">orange</color>

<color cid="c7">green</color>

</colors>
<shirt color="c4">oxford button-down</shirt>

<shirt color="c1">poly blend, straight collar</shirt>
<shirt color="c6">monogrammed, tab collar</shirt>

</shirts>
196 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

������� Don’t confuse the document() function with the use of xsl:include
and xsl:import. Those XSLT instructions let you insert one stylesheet
inside another; the document() function lets you access other documents
to combine with your source documents.

You don’t need to insert the entire document read by the document() function into
your result document. This next stylesheet is like the last one except that the
xsl:apply-templates element’s select attribute selects only the elements in
that document whose cid attribute value equals “c7”:

<!-- xq488.xsl: converts xq484.xml into xq492.xml -->

<xsl:template match="shirts">

<shirts>
<xsl:apply-templates select="document('xq485.xml')//*[@cid='c7']"/>

<xsl:apply-templates/>
</shirts>

</xsl:template>

<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

The result only has those elements from the xq485.xml inserted:

<shirts><color cid="c7">orange</color><color cid="c7">green</color>

<shirt color="c4">oxford button-down</shirt>

<shirt color="c1">poly blend, straight collar</shirt>
<shirt color="c6">monogrammed, tab collar</shirt>

</shirts>

One valuable use of the document() function is to read in a document that stores
elements to use for lookups. (For an introduction to the declaration and use of keys,
see section 5.9, “Declaring keys and performing lookups,” page 173.) For example,
let’s say we want to add the same source document’s list of shirts to the result tree, but
we want each shirt listed with its color name spelled out instead of its color code. We
need to take the value of the colorCode attribute in each shirt element (for exam-
ple, “c4” or “c1”), find the color element in the xq485.xml document that has that
value in its cid attribute, and then output that color element’s contents—the actual
name of the color, such as “yellow” or “blue.” The result should look like this:

blue oxford button-down
yellow poly blend, straight collar

white monogrammed, tab collar

The following stylesheet does this because it references the xq485.xml document
twice, the stylesheet first declares a variable named colorLookupDoc whose value
uses the document() function to read the document into a tree where it can be
MULTIPLE INPUT DOCUMENTS 197

referenced elsewhere in the document. (This is more efficient than making the doc-
ument() function call twice.)

<!-- xq487.xsl: converts xq484.xml into xq493.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>

<xsl:variable name="colorLookupDoc" select="document('xq485.xml')"/>

<xsl:key name="colorNumKey" match="color" use="@cid"/>

<xsl:template match="shirts">

<xsl:apply-templates select="$colorLookupDoc"/>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="colors"/>

<xsl:template match="shirt">
<xsl:variable name="shirtColor" select="@colorCode"/>

<xsl:for-each select="$colorLookupDoc">
<xsl:value-of select="key('colorNumKey',$shirtColor)"/>

</xsl:for-each>
<xsl:text> </xsl:text><xsl:apply-templates/><xsl:text>

</xsl:text>
</xsl:template>

</xsl:stylesheet>

The xsl:key instruction names a colorNumKey key as a group of color ele-
ments whose cid attribute will be used as an index to look up specific color ele-
ments. When an efficient XSLT processor sees this instruction, it should create a hash
table in memory or another data structure to speed these lookups.

The template rule for the shirts element resembles the one in the earlier exam-
ples. It has two xsl:apply-templates instructions: one to read in the external
xq485.xml document (referring to this document in this example using the color-
LookupDoc variable instead of the document’s filename) and another to process the
shirts element’s contents.

A brief template rule for the colors element suppresses this element from being
copied to the result tree. Another template rule uses the key() function to look up
the color names within the xq485.xml document’s colors element.

The template rule for the shirt element looks up the color name and adds it
to the result tree, followed by a single space (added by an xsl:text element) and
the contents of that element. The lookup is performed using a key() function that
names the colorNumKey key declared at the beginning of the stylesheet and the
color ID of the shirt element being processed as the value to look for in the key.
(The color ID is stored in a shirtColorCode variable declared at the beginning of
the template.)
198 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

Wrapping an xsl:for-each element around the xsl:value-of instruc-
tion that calls the key() function solves a small problem with using the key() func-
tion to look something up in another document. This function looks for key nodes
in the same document as the context node, and without that xsl:for-each
instruction, the context node for this xsl:value-of element is the shirt element
being processed by the template rule. We’re looking for a color element in the
xq485.xml document, not in the same document as the shirt node, so we need to
make xq485.xml the context node document for the xsl:value-of instruction.
Wrapping it with an xsl:for-each instruction that selects xq485.xml (again, ref-
erenced using the variable colorLookupDoc) accomplishes this.

6.4 USING MODES TO CREATE TABLES OF CONTENTS

AND OTHER GENERATED LISTS

XSLT’s modes provide a way to have more than one template rule in a stylesheet for
the same set of nodes and to use all these templates in one application of the
stylesheet. This allows you to process the same source tree nodes more than once,
adding them to the result tree multiple times with different markup each time.

For example, a stylesheet can have two different template rules for the title ele-
ment children of the following document’s chapter elements:

1 One template rule adds these title elements to their normal place at the
beginning of each chapter.

2 One template rule for these same title elements adds them to a table of con-
tents at the beginning of a document with a link to the corresponding copy of
the same title put there by the other template rule.

<story>

<chapter><title>Chapter 1</title>
<para>A Dungeon horrible, on all sides round</para>

<para>More unexpert, I boast not: them let those</para>
</chapter>

<chapter><title>Chapter 2</title>

<para>Contrive who need, or when they need, not now.</para>
<para>For while they sit contriving, shall the rest</para>

</chapter>

<chapter><title>Chapter 3</title>
<para>Millions that stand in Arms, and longing wait</para>

<para>So thick a drop serene hath quenched their Orbs</para>
</chapter>

</story>

A stylesheet distinguishes between the two template rules by giving at least one a
mode attribute value with an identifying name, and then using that name when
GENERATED LISTS 199

applying the template with an xsl:apply-templates instruction. For example,
the first template rule in the following stylesheet has two xsl:apply-templates
elements after some opening HTML tags and a “Table of Contents” h1 header:

<!-- xq550.xsl: converts xq549.xml into xq551.html -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="html"/>

<xsl:template match="story">

<html><body>
<h1>Table of Contents</h1>

<xsl:apply-templates select="chapter/title" mode="toc"/>

<xsl:apply-templates/></body></html>

</xsl:template>

<xsl:template match="chapter/title">

<h2><xsl:apply-templates/></h2>
</xsl:template>

<xsl:template match="chapter/title" mode="toc">

<p><xsl:apply-templates/></p>
</xsl:template>

<xsl:template match="para">

<p><xsl:apply-templates/></p>
</xsl:template>

<xsl:template match="story/title">
<h1><xsl:apply-templates/></h1>

</xsl:template>
</xsl:stylesheet>

An xsl:apply-templates instruction usually tells the XSLT processor to apply
any applicable templates to the nodes described by the value of the select
attribute (or, if no select attribute exists, to any children of the context node).
The first of this template rule’s xsl:apply-templates elements, however, has a
mode attribute with a value of “toc”, which tells the XSLT processor to only apply
template rules that have a mode value of “toc” themselves. The third xsl:tem-
plate element in the stylesheet is such a template rule, and it adds the chapter title
surrounded by an HTML a element with a p element enclosing that. The a element
has an href attribute linking it to an a element in the same document with a value
given by the generate-id() function. (See section 6.12, “Generating IDs and
links,” page 243, for more on using this function to create internal HTML links.)

This template’s a elements will link to additional a elements added to the result
document by the stylesheet’s second template rule. Whenever the XSLT processor finds
a title child of a chapter element, this template rule tells the processor to add the
title element’s contents to the result document inside of an h2 element with an a
element whose name attribute gets its value from the generate-id() function.
200 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

Let’s review what this stylesheet does starting with the first template rule. For each
story element, this template rule has the following elements in its template to add
nodes to the result tree:

• start-tags for the HTML html and body elements
• a “Table of Contents” header as an h1 element
• an xsl:apply-templates element with a mode setting of “toc”. This adds

the title children of chapter elements as processed by the stylesheet’s third
template rule, which puts each title in its own p element as a link to another
copy of the same title later in the document.

• an xsl:apply-templates element with no select attribute value. This
processes all the children (and, assuming the existence of the XSLT default tem-
plates, all the descendants) of the story element, even though some have
already been processed by the first xsl:apply-templates element

• end-tags corresponding to the HTML html and body start-tags at the begin-
ning of the template

The result shows that the chapter element’s title contents were each added
twice to the result tree: once after the “Table of Contents” header and once in their
appropriate place in the body of the document:
<html>

<body>
<h1>Table of Contents</h1>

<p>
Chapter 1

</p>
<p>

Chapter 2
</p>

<p>
Chapter 3

</p>

<h2>

Chapter 1</h2>
<p>A Dungeon horrible, on all sides round</p>

<p>More unexpert, I boast not: them let those</p>

<h2>

Chapter 2</h2>
<p>Contrive who need, or when they need, not now.</p>

<p>For while they sit contriving, shall the rest</p>

<h2>

Chapter 3</h2>

<p>Millions that stand in Arms, and longing wait</p>
<p>So thick a drop serene hath quenched their Orbs</p>

</body>

</html>
GENERATED LISTS 201

(Values created by the generate-id() function may be different when you run this
example.) Even without using modes, nothing can prevent you from putting as many
xsl:apply-templates instructions inside of a single template as you like. If none
have mode values (or if they all have the same mode value), they’ll just add identical
copies of the appropriate node contents to the result tree by calling the same template
rule repeatedly. Specifying different modes for each xsl:apply-templates
instruction and adding corresponding template rules to the stylesheet lets you process
the same source tree nodes multiple times with different processing each time, letting
you re-use the same input in different ways.

This is a valuable technique for creating new documents out of old ones to get
multiple uses out of the same content. This chapter’s example created a table of con-
tents to add to the source document’s contents. An index, a list of figures or tables,
or any other re-use of a subset of a document’s contents would all be equally easy to
create using XSLT modes.

6.5 NON-XML OUTPUT

Section 6.8, “Stripping all markup from a document,” on page 224, describes how to
convert a source tree to a result tree containing no tags. For more complex non-XML
output, simply add whatever markup you like inside the template rules—as long as it
doesn’t turn your stylesheet into an ill-formed stylesheet. For example, the following
will turn the sample input document below it into an RTF file:

<!-- xq387.xsl: converts xq388.xml into xq389.rtf (sample.rtf) -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:output method="text"/>

<xsl:template match="article">{\rtf1 <xsl:apply-templates/> }

</xsl:template>

<xsl:template match="title">
\par {\b <xsl:apply-templates/>}

</xsl:template>

<xsl:template match="p">
\par <xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Don’t forget the xsl:output element with “text” as the value of its method
attribute. This does two things:

• It tells the XSLT processor not to add an XML declaration to the result tree. You
could have done this just as well with an omit-xml-declaration attribute
in the xsl:output element, so the next point is more important.
202 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

• It disables output escaping. If your input document has the string “3 < 4”, it’s
going to represent it as “3 < 4” so that the XML parser doesn’t treat that “<”
character as the beginning of a tag. If the XSLT parser is creating an XML or
HTML document in the result tree, it’s going to write out that less-than charac-
ter as an “<” entity reference so that the application reading in the result tree
document doesn’t mistake it for the beginning of a tag. Specifying a method
value of “text” in the xsl:output element tells the XSLT processor “The result
tree document is plain text that won’t be read by an XML or HTML application,
so don’t worry about escaping special characters like ‘&’ and ‘<’ in the result.”

The preceding stylesheet, when run with this input document,
<article>

<title author="bd" ver="1.0">My Article</title>
<p>First paragraph. 3 < 4.</p>

<p>Second paragraph. AT&T is a big company.</p>
</article>

outputs this RTF document:
{\rtf1
\par {\b My Article}

\par First paragraph. 3 < 4.

\par Second paragraph. AT&T is a big company. }

Microsoft Word has no problem with this RTF file, displaying it as shown in
figure 6.2.

Figure 6.2 Microsoft Word displaying created RTF file
NON-XML OUTPUT 203

Another classic use of plain text output from XML input is the creation of comma-
separated value (CSV) files. For example, to turn this input document

<employees>

<emp>
 <lName>Moss</lName><fName>Sterling</fName>

 <hireDate>19980323</hireDate>
</emp>

<emp>
 <lName>Hill</lName><fName>Phil</fName>

 <hireDate>19991103</hireDate>
</emp>

</employees>

into a comma-separated text file like this,

Moss,Sterling,19980323

Hill,Phil,19991103

the following stylesheet is all you need:

<!-- xq392.xsl: converts xq390.xml into xq391.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:output method="text" indent="no"/>

 <xsl:template match="emp">

 <xsl:apply-templates select="lName"/><xsl:text>,</xsl:text>
 <xsl:apply-templates select="fName"/><xsl:text>,</xsl:text>

 <xsl:apply-templates select="hireDate"/>
 </xsl:template>

</xsl:stylesheet>

This stylesheet has three special features:

• The xsl:output element with the method attribute value set to “text” pre-
vents the XSLT processor from adding an XML declaration to the beginning of
the CSV output file.

• The xsl:output element’s indent attribute value of “no” tells the XSLT pro-
cessor not to indent the result. If you usually use XSLT to create XML output,
you don’t care about extra indenting, because these indentations make your out-
put easier to read, and an XML parser reading that output will ignore the white-
space anyway. An application reading comma-separated values, however, might
treat extra spaces at the beginning of a line as part of the first value on that line.

• An XSLT processor strips any whitespace between elements that isn’t next to
character data. If the commas in the stylesheet were not enclosed in xsl:text
elements, the XSLT processor would have preserved the carriage returns you see
in the stylesheet after them, because the carriage returns would have been next to
character data: the commas. This would have broken up the output lines. Using
204 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

the xsl:text elements prevented that outcome. (Another technique for avoid-
ing carriage returns in the CSV output lines is to put everything in the
match="emp" template rule on one line, which makes the stylesheet harder to
read and prevents it from fitting on its page in this book.)

For related information, see:

• section 6.8, “Stripping all markup from a document,” page 224

• section 6.11, “Whitespace: preserving and controlling,” page 229

6.6 NUMBERING, AUTOMATIC

The xsl:number instruction makes it easy to insert a number into your result
document. Its value attribute lets you name the number to insert, but if you
really want to add a specific number to your result, it’s much simpler to add that
number as literal text. When you omit the value attribute from an xsl:value-
of instruction, the XSLT processor calculates the number based on the context
node’s position in the source tree or among the nodes being counted through by an
xsl:for-each instruction.

Eight other attributes are available to tell the XSLT processor how you want your
numbers to look. Before we look at them, we’ll start by numbering the color names
in this simple document:

<colors>

<color>red</color>
<color>green</color>

<color>blue</color>
<color>yellow</color>

</colors>

The following template adds a number before each color element and puts a period
and a space between the number and the element’s content:

<!-- xq395.xsl: converts xq394.xml into xq396.txt -->

<xsl:template match="color">
<xsl:number/>. <xsl:apply-templates/>

</xsl:template>

The result adds a simple number before each period:

1. red

2. green
3. blue

4. yellow

The format attribute gives you greater control over the numbers’ appearance. The
following stylesheet adds the color list to the result tree four times, using upper and
lowercase Roman numerals in the format attribute the first two times and upper
and lowercase letters the third and fourth times. In this stylesheet, the period and
NUMBERING, AUTOMATIC 205

space are in the format attribute value instead of being literal text after the
xsl:number instruction as they were in the previous example. This will be useful as
we explore fancier numbering, such as “2.1.3” for a subsection:

<!-- xq397.xsl: converts xq394.xml into xq398.txt -->

<xsl:template match="colors">

<xsl:for-each select="color">

<xsl:number format="I. "/><xsl:value-of select="."/><xsl:text>
</xsl:text>

</xsl:for-each>

<xsl:text>
~~~~~~~~~~~~~~~~~~~~~~~

</xsl:text>

<xsl:for-each select="color">
<xsl:number format="i. "/><xsl:value-of select="."/><xsl:text>

</xsl:text>
</xsl:for-each>

<xsl:text>
~~~~~~~~~~~~~~~~~~~~~~~

</xsl:text>

<xsl:for-each select="color">
<xsl:number format="A. "/><xsl:value-of select="."/><xsl:text>

</xsl:text>
</xsl:for-each>

<xsl:text>

~~~~~~~~~~~~~~~~~~~~~~~
</xsl:text>

<xsl:for-each select="color">
<xsl:number format="a. "/><xsl:value-of select="."/><xsl:text>

</xsl:text>
</xsl:for-each>

</xsl:template>

To output the same list from the preceding XML document four times, this stylesheet
has a single template rule for the list’s parent element, colors. Its template has four
xsl:for-each elements, one for each pass through the list.

��� xsl:for-each elements are a popular place to use the xsl:number in-
struction, because a template that needs to iterate through a list of nodes
and to add nodes to the result tree may well want to add them with num-
bers (or letters) in front of them.

The stylesheet also has xsl:text nodes to add carriage returns after each color name
and a line of tilde characters (~) between each set of color names. Using the same color
names input document, this stylesheet creates the following result document:
206 CHAPTER 6 SPECIALIZED INPUT & OUTPUT



I. red

II. green
III. blue

IV. yellow

~~~~~~~~~~~~~~~~~~~~~~~

i. red
ii. green

iii. blue
iv. yellow

~~~~~~~~~~~~~~~~~~~~~~~
A. red

B. green
C. blue

D. yellow

~~~~~~~~~~~~~~~~~~~~~~~

a. red
b. green

c. blue
d. yellow

The next example shows how leading zeros before a “1” in a format attribute tell the
XSLT processor to pad the number with zeros to make it the width shown. The
“001. ” in the template above will (in addition to adding a period and a space after
each number) add as many zeros as necessary before each number to make it three
digits wide:

<!-- xq399.xsl: converts xq400.xml into xq401.txt -->
<xsl:template match="color">

<xsl:number format="001. "/><xsl:apply-templates/>
</xsl:template>

For example, it converts this source document

<colors>
<color>red</color>

<color>green</color>
<color>blue</color>

<color>yellow</color>
<color>purple</color>

<color>brown</color>
<color>orange</color>

<color>pink</color>
<color>black</color>

<color>white</color>
<color>gray</color>

</colors>

to this:

001. red
002. green
NUMBERING, AUTOMATIC 207

003. blue

004. yellow
005. purple

006. brown
007. orange

008. pink
009. black

010. white
011. gray

The xsl:number element’s grouping-separator and grouping-size attributes
let you add punctuation to larger numbers to make them easier to read. For example,
a grouping-separator value of “,” and a grouping-size value of “3” put
commas before each group of three digits in numbers over 999, so that 10000000
gets formatted as 10,000,000. (These two attributes work as a pair. If you use either
without the other, the XSLT processor ignores it.)

If a value is specified for the xsl:number element’s lang attribute, an XSLT
processor may check the value and adjust the formatting of the numbers or letters to
reflect the conventions of the specified language.

The xsl:number element’s letter-value attribute also makes it easier to
follow the numbering conventions of other languages—the attribute can have a value
of either “alphabetic” or “traditional” to distinguish between the use of letters as letters
and their use in some other numbering system. For example, the English language uses
the letters I, V, X, C, M, and others for Roman numerals, in which case they’re cer-
tainly not listed in alphabetical order. XSLT processors have built-in recognition of
the difference between using these characters as alphabetic characters and as Roman
numerals (see the use of the format attribute above), but for similar cases with other
spoken languages, the letter-value attribute can make the stylesheet developer’s
intent clearer.

The level attribute specifies which source tree levels will be counted for the
xsl:number element’s value. Its default value is “single”. A level value of “mul-
tiple” lets you count nested elements such as the color elements in this document:

<colors>

<color>red</color>
<color>green</color>

<color>blue
<color>robin's egg</color>

<color>navy</color>
<color>cerulean</color>

</color>
<color>yellow</color>

</colors>

Note how the color element with “blue” as a value contains three more color ele-
ments. To number this nested list along with the main color list, the following tem-
plate rule has a value of “multiple” specified for the level attribute:
208 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

<!-- xq403.xsl: converts xq402.xml into xq404.xsl -->

<xsl:template match="color">
<xsl:number level="multiple" format="1. "/>

<xsl:apply-templates/>
</xsl:template>

When processing the XML document above, this stylesheet numbers the color “blue”
as “3.” and the list of colors inside of it as “3.1.”, “3.2.”, and “3.3.”:

1. red
2. green

3. blue
3.1. robin's egg

3.2. navy
3.3. cerulean

4. yellow

The level attribute can also let you do this with elements that are nested inside
other kinds of elements. When you do this, the count and from attributes give you
greater control over what gets counted for each level of numbering. To illustrate what
these attributes can do when working together, we’ll use this DocBook document:
<book><title>Title of Book</title>
<chapter><title>First Chapter</title>

<sect1><title>First Section, First Chapter</title>
<figure><title>First picture in book</title>

<graphic fileref="pic1.jpg"/></figure>
</sect1>

</chapter>
<chapter><title>Second Chapter</title>

<sect1><title>First Section, Second Chapter</title>
<sect2>

<title>First Subsection, First Section, Second Chapter</title>
<figure><title>Second picture in book</title>

<graphic fileref="pic2.jpg"/></figure>
</sect2>

<sect2>
<title>Second Subsection, First Section, Second Chapter</title>

<figure><title>Third picture in book</title>
<graphic fileref="pic1.jpg"/></figure>

</sect2>
<sect2>

<title>Third Subsection, First Section, Second Chapter</title>
<figure><title>Fourth picture in book</title>

<graphic fileref="pic1.jpg"/></figure>
</sect2>

</sect1>
<sect1><title>Second Section, Second Chapter</title>

<para>The End.</para>
</sect1>

</chapter>
</book>
NUMBERING, AUTOMATIC 209

This next template rule resembles the one that numbered the nested list of colors. It
numbers the sect1 elements and has a value of “multiple” for the xsl:number
instruction’s level attribute:

<!-- xq406.xsl: converts xq405.xml into xq407.txt -->

<xsl:template match="sect1">
<xsl:number format="1. " level="multiple"/>

<xsl:apply-templates/>
</xsl:template>

The result numbers the sect1 elements, but only the sect1 elements:

Title of Book

First Chapter
1. First Section, First Chapter

First picture in book

Second Chapter

1. First Section, Second Chapter

First Subsection, First Section, Second Chapter

Second picture in book

Second Subsection, First Section, Second Chapter

Third picture in book

Third Subsection, First Section, Second Chapter

Fourth picture in book

2. Second Section, Second Chapter

The End.

If we want the sect1 elements in chapter 2 to be numbered 2.1, 2.2, 2.3, the
“sect1” template rule needs the count attribute to tell the XSLT processor which
level of elements to count. The template rule for the nested color elements didn’t
need this because, when no count attribute is specified, the XSLT processor counts
any node with the same type as the current node. In that case, the current node was
a color element, so it counted all the color element nodes, even when some were
inside others.

In this next template rule, the xsl:number instruction counts chapter and
sect1 elements to figure out the number to assign to each sect1 element:

<!-- xq408.xsl: converts xq405.xml into xq409.txt -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="sect1">
<xsl:number format="1. " level="multiple" count="chapter|sect1"/>

<xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>
210 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

Applying this template to the same source document does number the sect1 ele-
ments as 2.1 and 2.2, but it doesn’t number the chapter elements:

Title of Book

First Chapter
1.1. First Section, First Chapter

First picture in book

Second Chapter

2.1. First Section, Second Chapter

First Subsection, First Section, Second Chapter

Second picture in book

Second Subsection, First Section, Second Chapter

Third picture in book

Third Subsection, First Section, Second Chapter

Fourth picture in book

2.2. Second Section, Second Chapter

The End.

That’s because it’s a template rule for the sect1 element, and the stylesheet had no
template rule to add numbers for the chapter elements. The next stylesheet
includes a “chapter” template rule along with a sect2 template rule that counts the
chapter, sect1, and sect2 elements to create three-level numbers for the
sect2 elements:

<!-- xq410.xsl: converts xq405.xml into xq411.txt -->

<xsl:template match="chapter">

<xsl:number format="1. "/>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="sect1">

<xsl:number format="1. " level="multiple" count="chapter|sect1"/>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="sect2">

<xsl:number format="1. " level="multiple"
count="chapter|sect1|sect2"/>

<xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

With the same document as input, the output shows first, second, and third level
numbered headers for the chapter, sect1, and sect2 elements:

Title of Book

1. First Chapter
1.1. First Section, First Chapter

First picture in book
NUMBERING, AUTOMATIC 211

2. Second Chapter

2.1. First Section, Second Chapter
2.1.1.

First Subsection, First Section, Second Chapter
Second picture in book

2.1.2.
Second Subsection, First Section, Second Chapter

Third picture in book

2.1.3.

Third Subsection, First Section, Second Chapter
Fourth picture in book

2.2. Second Section, Second Chapter
The End.

What if we don’t want renumbering to restart with the beginning of each chapter or
section? For example, if we number the figure elements with the following tem-
plate rule,

<!-- xq412.xsl: converts xq405.xml into xq413.txt -->

<xsl:template match="figure">

<xsl:number format="1. "/><xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

they all come out as number 1, because each is the first figure element within its
particular container element:

Title of Book
First Chapter

First Section, First Chapter
1. First picture in book

Second Chapter

First Section, Second Chapter

First Subsection, First Section, Second Chapter

1. Second picture in book

Second Subsection, First Section, Second Chapter
1. Third picture in book

Third Subsection, First Section, Second Chapter

1. Fourth picture in book

Second Section, Second Chapter

The End.

We want the figures to be numbered sequentially throughout the book, so we set the
xsl:number element’s level attribute to “any”. This tells the XSLT processor to
count all the nodes that are the same as the current node (in this case, figure
212 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

nodes) throughout the document. With this one small change in the previous tem-
plate rule,

<!-- xq414.xsl: converts xq405.xml into xq415.txt -->

<xsl:template match="figure">
<xsl:number format="1. " level="any"/><xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

the result versions of the figure elements are numbered 1, 2, 3, and 4 throughout
the document, regardless of the source tree level where each one is located:

Title of Book
First Chapter

First Section, First Chapter
1. First picture in book

Second Chapter
First Section, Second Chapter

First Subsection, First Section, Second Chapter

2. Second picture in book

Second Subsection, First Section, Second Chapter
3. Third picture in book

Third Subsection, First Section, Second Chapter
4. Fourth picture in book

Second Section, Second Chapter

The End.

If you don’t want numbering to start at the beginning of your document and keep
advancing throughout that document, but you also don’t want an element type’s
number reset to 1 each time that element shows up in a new container, you can use
the xsl:number element’s from attribute to constrain a level value of “any”. If
the from attribute names an element type (and it can name several, because you can
use a pattern here), counting restarts each time—and only when—one of those
named elements starts.

Using the from attribute gives you more flexibility than using a level value of
multiple because the XSLT processor won’t worry about the number of hierarchi-
cal levels between the elements being counted and the ones used for resetting the
counting. For example, the following template rule is exactly like the last one except
for its from value of “chapter”:

<!-- xq416.xsl: converts xq405.xml into xq417.txt -->

<xsl:template match="figure">
<xsl:number format="1. " level="any" from="chapter"/>

<xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>
NUMBERING, AUTOMATIC 213

It numbers the figure elements sequentially, regardless of their level, restarting the
count with each new chapter:
Title of Book

First Chapter
First Section, First Chapter

1. First picture in book

Second Chapter
First Section, Second Chapter

First Subsection, First Section, Second Chapter

1. Second picture in book

Second Subsection, First Section, Second Chapter

2. Third picture in book

Third Subsection, First Section, Second Chapter
3. Fourth picture in book

Second Section, Second Chapter

The End.

You can use the from attribute with a level value of “multiple”, but the XSLT pro-
cessor will still reset the counting with descendants of any from elements. For exam-
ple, if that xsl:number tag in the last example had said

<xsl:number format="1. " level="multiple" from="chapter|figure"/>

all the figures would have been number 1 because the level setting of “multiple”
would have told the XSLT processor to reset the numbering for each sect2 element.

���	 Heavy use of the xsl:number instruction slows your XSLT processor
down. By heavy use, I don’t necessarily mean stylesheets that use this in-
struction a lot—if your stylesheet only uses it once in one template and
your source document has the XSLT processor calling that template 1000
times, that’s heavy use. For really simple numbering, an xsl:value-of
instruction that uses the position() function in its select attribute
can mean a faster document transformation than you’ll get using the
xsl:number instruction.

The following template rule uses the position() function in an xsl:value-of
element’s select attribute to put numbers before each color element’s content as
that content is added to the result tree. The xsl:text element adds a carriage
return after the contents of each color element:
<!-- xq418.xsl: converts xq394.xml into xq419.txt -->

<xsl:template match="colors">

<xsl:for-each select="color">
<xsl:value-of select="position()"/>. <xsl:value-of select="."/>

<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>
214 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

With the simple colors document shown at the beginning of this chapter, it creates
this output:

1. red

2. green
3. blue

4. yellow

Adding numbers this way doesn’t give you all the formatting control that you have
with the xsl:number instruction, but if you only need a simple sequence of num-
bers in your list, doing it this way can mean much faster transformation times.

Remember that position() in this example refers to the node’s position among
the nodes selected for the xsl:for-each instruction—in this case, the color chil-
dren of the colors element. If you had tried to number the color elements this way,

<!-- xq420.xsl: converts xq394.xml into xq421.txt -->

<xsl:template match="color">

<xsl:value-of select="position()"/>. <xsl:apply-templates/>
</xsl:template>

the XSLT processor would have counted each color element’s position among all of
the colors element’s children, including the text nodes storing the carriage returns
between each color element in the source tree. The result would be this:

2. red

4. green
6. blue

8. yellow

The text nodes holding those carriage returns are the first, third, fifth, seventh, and
ninth child nodes of the colors element. Numbers don’t show up for them because
the stylesheet only has a template rule for color elements and none to add the car-
riage returns to the result tree. Still, the position() function counts both the color
children and the text node children between them to determine the numbers to put
before each color name in the result document. (One thing that may be confusing is
that carriage returns are whitespace, so the extra nodes being counted are nodes you
can’t see.) In the previous example, the xsl:for-each instruction ensured that the
count() function counted only the nodes that we wanted it to count: the color
element nodes.

6.7 SORTING

The xsl:sort instruction lets you sort a group of similar elements. Attributes for
this element let you add details about how you want the sort done. You can sort using
alphabetic or numeric ordering, sort on multiple keys, and reverse the sort order.

To demonstrate different ways to sort, we’ll use the following document:
SORTING 215

<employees>

 <employee hireDate="04/23/1999">
 <last>Hill</last>

 <first>Phil</first>
 <salary>100000</salary>

 </employee>

 <employee hireDate="09/01/1998">

 <last>Herbert</last>
 <first>Johnny</first>

 <salary>95000</salary>
 </employee>

 <employee hireDate="08/20/2000">
 <last>Hill</last>

 <first>Graham</first>
 <salary>89000</salary>

 </employee>

</employees>

This first sorting stylesheet sorts the employee children of the employees ele-
ment by salary:

<!-- xq424.xsl: converts xq423.xml into xq425.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="text"/>

 <xsl:template match="employees">
 <xsl:apply-templates>

 <xsl:sort select="salary"/>
 </xsl:apply-templates>

 </xsl:template>

 <xsl:template match="employee">

 Last: <xsl:apply-templates select="last"/>
 First: <xsl:apply-templates select="first"/>

 Salary: <xsl:apply-templates select="salary"/>
 Hire Date: <xsl:apply-templates select="@hireDate"/>

 <xsl:text>
 </xsl:text>

 </xsl:template>

</xsl:stylesheet>

It’s pretty simple. The employees element’s template has an xsl:apply-
templates instruction with an xsl:sort child to tell the XSLT processor to sort
the employees element’s child elements. The xsl:sort instruction’s select
attribute specifies the sort key to use: the employee elements’ salary values. (If
you omit the select attribute, the XSLT processor uses a string version of the ele-
ments to be sorted as a sort key.) The employee element’s template adds each of its
216 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

child node’s values to the result tree preceded by a label. A final xsl:text element
adds a carriage return after each hire date value.

��� Most xsl:apply-templates elements you see in XSLT stylesheets are
empty. When you sort an element’s children, the xsl:sort element goes
between the start- and end-tags of the xsl:apply-templates element
that tells the XSLT processor to process these children. The only other
place you can put an xsl:sort instruction is inside the xsl:for-each
instruction used to iterate across a node set.

With the preceding document, this stylesheet gives us the following output:

 Last: Hill

 First: Phil
 Salary: 100000

 Hire Date: 04/23/1999

 Last: Hill
 First: Graham

 Salary: 89000
 Hire Date: 08/20/2000

 Last: Herbert
 First: Johnny

 Salary: 95000
 Hire Date: 09/01/1998

The employees are sorted by salary, but they’re sorted alphabetically—“1” comes before
“8” and “9”, so a salary of “100000” comes first. We want the salary values treated
as numbers, so we make a simple addition to the template’s xsl:sort instruction:

<!-- xq426.xsl: converts xq423.xml into xq427.xml -->

<xsl:template match="employees">
 <xsl:apply-templates>

 <xsl:sort select="salary" data-type="number"/>
 </xsl:apply-templates>

</xsl:template>

Now, the output is sorted by the salary element’s numeric value:
 Last: Hill
 First: Graham

 Salary: 89000
 Hire Date: 08/20/2000

 Last: Herbert
 First: Johnny

 Salary: 95000

 Hire Date: 09/01/1998

 Last: Hill

 First: Phil
 Salary: 100000

 Hire Date: 04/23/1999
SORTING 217

To reverse the order of this or any other sort, add an order attribute with a value of
“descending”:

<!-- xq428.xsl: converts xq423.xml into xq429.xml -->

<xsl:template match="employees">
 <xsl:apply-templates>

 <xsl:sort select="salary" data-type="number" order="descending"/>
 </xsl:apply-templates>

</xsl:template>

Whether the data-type attribute has a value of “number” like the stylesheet above
or “text” (the default), an order value of “descending” reverses the order of the sort:

 Last: Hill
 First: Phil

 Salary: 100000
 Hire Date: 04/23/1999

 Last: Herbert
 First: Johnny

 Salary: 95000
 Hire Date: 09/01/1998

 Last: Hill
 First: Graham

 Salary: 89000
 Hire Date: 08/20/2000

If your xsl:apply-templates (or xsl:for-each) element has more than one
xsl:sort instruction inside it, the XSLT processor treats them as multiple keys to
the sort. For example, the stylesheet with this next template sorts the employees by
last name and then by first name, so that any employees with the same last name will
be in first name order.

<!-- xq430.xsl: converts xq423.xml into xq431.xml -->

<xsl:template match="employees">
 <xsl:apply-templates>

 <xsl:sort select="last"/>
 <xsl:sort select="first"/>

 </xsl:apply-templates>
</xsl:template>

When applied to the document above, the result shows Johnny Herbert before Phil
and Graham Hill, and the secondary sort puts Graham Hill before Phil Hill:

 Last: Herbert
 First: Johnny

 Salary: 95000
 Hire Date: 09/01/1998

 Last: Hill
 First: Graham
218 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

 Salary: 89000

 Hire Date: 08/20/2000

 Last: Hill

 First: Phil

 Salary: 100000

 Hire Date: 04/23/1999

The sort key doesn’t need to be an element child of the sorted elements. The
xsl:sort instruction’s select attribute can take any XPath expression as a sort
key. For example, the following version sorts the employees by their hireDate
attribute values:

<!-- xq432.xsl: converts xq423.xml into xq433.xml -->

<xsl:template match="employees">

 <xsl:apply-templates>
 <xsl:sort select="@hireDate"/>

 </xsl:apply-templates>
</xsl:template>

Treating the dates as strings doesn’t do much good, because they’re sorted alphabetically,

 Last: Hill

 First: Phil
 Salary: 100000

 Hire Date: 04/23/1999

 Last: Hill

 First: Graham
 Salary: 89000

 Hire Date: 08/20/2000

 Last: Herbert

 First: Johnny
 Salary: 95000

 Hire Date: 09/01/1998

but it’s easy enough to have three sort keys based on the year, month, and day sub-
strings of the date string:

<!-- xq434.xsl: converts xq423.xml into xq435.xml -->

<xsl:template match="employees">

 <xsl:apply-templates>
 <xsl:sort select="substring(@hireDate,7,4)"/> <!-- year -->

 <xsl:sort select="substring(@hireDate,1,2)"/> <!-- month -->
 <xsl:sort select="substring(@hireDate,3,2)"/> <!-- day -->

 </xsl:apply-templates>
</xsl:template>

This stylesheet sorts the dates properly:

 Last: Herbert

 First: Johnny
SORTING 219

 Salary: 95000

 Hire Date: 09/01/1998

 Last: Hill

 First: Phil
 Salary: 100000

 Hire Date: 04/23/1999

 Last: Hill

 First: Graham
 Salary: 89000

 Hire Date: 08/20/2000

All the examples so far have sorted the children (the employee elements) of an ele-
ment (employees) using one or more child nodes of those children (the salary,
first, and last elements or the hireDate attribute) as sort keys. The previous
example’s use of the hireDate attribute showed that the expression used as the
xsl:sort element’s select attribute doesn’t have to be a child element name, but
can be an attribute name instead—or even a value returned by a function.

Your sort key can be an even more complex XPath expression. For example, the
next stylesheet sorts the wine elements in this document’s winelist element, but
not by a child of the wine element. This stylesheet sorts the wine elements by a
grandchild of the wine elements: the prices child’s discounted element:

<winelist>

 <wine grape="Chardonnay">

 <winery>Lindeman's</winery>
 <product>Bin 65</product>

 <year>1998</year>
 <prices>

 <list>6.99</list>
 <discounted>5.99</discounted>

 <case>71.50</case>
 </prices>

 </wine>

<wine grape="Chardonnay">

 <winery>Benziger</winery>
 <product>Carneros</product>

 <year>1997</year>
 <prices>

 <list>10.99</list>
 <discounted>9.50</discounted>

 <case>114.00</case>
 </prices>

</wine>

 <wine grape="Cabernet">

 <winery>Duckpond</winery>
 <product>Merit Selection</product>

 <year>1996</year>
220 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

 <prices>

 <list>13.99</list>
 <discounted>11.99</discounted>

 <case>143.50</case>
 </prices>

 </wine>

 <wine grape="Chardonnay">

 <winery>Kendall Jackson</winery>
 <product>Vintner's Reserve</product>

 <year>1998</year>
 <prices>

 <list>12.50</list>
 <discounted>9.99</discounted>

 <case>115.00</case>
 </prices>

 </wine>
</winelist>

The sort key is only slightly more complicated than those shown in the earlier exam-
ples. It’s an XPath expression saying “the discounted child of the prices element”:

<!-- xq437.xsl: converts xq436.xml into xq438.xml -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:template match="winelist">

 <xsl:copy>
 <xsl:apply-templates>

 <xsl:sort data-type="number" select="prices/discounted"/>
 </xsl:apply-templates>

 </xsl:copy>
 </xsl:template>

 <xsl:template match="*">
 <xsl:copy>

 <xsl:apply-templates/>
 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

The entire stylesheet is not big. It just copies the wine elements, sorted according to
the sort key:

<?xml version="1.0" encoding="UTF-8"?>
<winelist>

<wine>
 <winery>Lindeman's</winery>

 <product>Bin 65</product>

 <year>1998</year>
 <prices>

 <list>6.99</list>
 <discounted>5.99</discounted>
SORTING 221

 <case>71.50</case>

 </prices>
 </wine><wine>

 <winery>Benziger</winery>
 <product>Carneros</product>

 <year>1997</year>
 <prices>

 <list>10.99</list>
 <discounted>9.50</discounted>

 <case>114.00</case>
 </prices>

</wine><wine>
 <winery>Kendall Jackson</winery>

 <product>Vintner's Reserve</product>
 <year>1998</year>

 <prices>
 <list>12.50</list>

 <discounted>9.99</discounted>
 <case>115.00</case>

 </prices>
 </wine><wine>

 <winery>Duckpond</winery>
 <product>Merit Selection</product>

 <year>1996</year>
 <prices>

 <list>13.99</list>
 <discounted>11.99</discounted>

 <case>143.50</case>
 </prices>

 </wine></winelist>

Let’s look at how the xsl:for-each instruction can use xsl:sort. The follow-
ing stylesheet takes the same winelist document above and lists the wines. When
the stylesheet gets to a Chardonnay, it lists all the other Chardonnays alphabetically:

<!-- xq439.xsl: converts xq436.xml into xq440.xml -->

<!DOCTYPE stylesheet [
<!ENTITY space "<xsl:text> </xsl:text>">

]>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">
 <xsl:output method="xml" omit-xml-declaration="yes" indent="no"/>

 <xsl:template match="wine">
 <xsl:apply-templates select="winery"/>&space;

 <xsl:apply-templates select="product"/>&space;
 <xsl:apply-templates select="year"/>&space;

 <xsl:apply-templates select="@grape"/>

 <xsl:if test="@grape = 'Chardonnay'">
 <xsl:text>

 other Chardonnays:
</xsl:text>
222 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

 <xsl:for-each

 select="preceding-sibling::wine[@grape = 'Chardonnay'] |
 following-sibling::wine[@grape = 'Chardonnay']">

 <xsl:sort select="winery"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select="winery"/>&space;

 <xsl:value-of select="product"/><xsl:text>

</xsl:text>

 </xsl:for-each>

 </xsl:if>
</xsl:template>

Before we examine how the stylesheet does this, let’s take a look at the result:

 Lindeman's Bin 65 1998 Chardonnay

 other Chardonnays:
 Benziger Carneros

 Kendall Jackson Vintner's Reserve

Benziger Carneros 1997 Chardonnay

 other Chardonnays:
 Kendall Jackson Vintner's Reserve

 Lindeman's Bin 65

 Duckpond Merit Selection 1996 Cabernet

 Kendall Jackson Vintner's Reserve 1998 Chardonnay
 other Chardonnays:

 Benziger Carneros
 Lindeman's Bin 65

First, notice the “&space;” entity references throughout the stylesheet. Instead of
writing “<xsl:text> </xsl:text>” over and over because I needed single spaces in so
many places, it was easier to declare an entity named space in the DOCTYPE dec-
laration with this xsl:text element as content and then plug it in with an entity
reference whenever I needed it.

The xsl:template template rule for the wine element has xsl:apply-
templates instructions for its winery, product, and year element children
followed by one for its grape attribute. Then, if the grape attribute has a value of
“Chardonnay”, it adds the text “other Chardonnays:” to the result tree followed by
the list of Chardonnays, which are added to the result tree using an xsl:for-each
instruction.

The select attribute of the xsl:for-each attribute selects all the nodes
that are either preceding siblings of the current node with a grape value of “Char-
donnay” or following siblings of the current node with the same grape value. (The
“|” symbol is the “or” part.) For each wine element that meets this select
attribute’s condition, the template first adds some whitespace indenting with an
xsl:text element, then the value of the wine element’s winery child, a space,
and the value of its product child. The first instruction in this xsl:for-each
element is an xsl:sort element, which tells the XSLT processor to sort the nodes
SORTING 223

selected by the xsl:for-each instruction alphabetically in “winery” order. That’s
how the nodes look in the result: after the first “other Chardonnays:” label, “Kendall
Jackson” comes after “Benziger”; after the second, “Lindeman’s” comes after “Ken-
dall Jackson”; and, after the last one, “Lindeman’s” comes after “Benziger”.

Because the xsl:for-each instruction lets you grab and work with any node
set that you can describe using an XPath expression, the ability to sort one of these
node sets makes xsl:for-each one of XSLT’s most powerful features.

This chapter has only touched on the uses of xsl:sort in XSLT. You can com-
bine it with other XSLT features to do even more. For example, see section 5.10,
“Finding the first, last, biggest, and smallest,” page 178.

For more background on other topics covered in this chapter see

• section 4.2, “Entities,” page 87

• section 5.1.3, “‘For’ loops, iteration,” page 118

• section 5.7.1, “Extracting and comparing strings,” page 153

• section 5.10, “Finding the first, last, biggest, and smallest,” page 178

6.8 STRIPPING ALL MARKUP FROM A DOCUMENT

How do we create a result tree with no markup? First, let’s review the four ways to add
XML elements to the result tree:

• putting elements from outside the XSLT namespace (or any declared extension
namespace) into your stylesheet

• using the xsl:element instruction

• copying a source tree element node directly with xsl:copy

• copying a node and its children with xsl:copy-of

If you don’t do any of these four approaches and remember to include the xsl:out-
put element with a method attribute value of “text”, your output won’t even look
like XML. The xsl:output element prevents the XSLT processor from adding an
XML declaration to the result tree. If your output will be read by a non-XML appli-
cation, an XML declaration will probably just confuse it. An xsl:output setting of
“text” also tells the XSLT processor not to “escape” special characters—that is, the
processor shouldn’t substitute the entity reference “&” for ampersands and
“<” for less-than characters in result tree text nodes. Instead, it leaves these charac-
ters alone, passing them to the result tree as plain text.

Text content of your input document’s elements can be copied to the result tree
with no attributes using a simple stylesheet that relies on XSLT’s default template
rules. The stylesheet below consists of an xsl:stylesheet element with an
xsl:output element that specifies text output. It’s all you need!
224 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

<!-- xq442.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:output method="text"/>

</xsl:stylesheet>

This takes advantage of XSLT’s built-in template rules, which are shown like this in
the XSLT specification:

<!-- xq443.xsl -->

<xsl:template match="*|/">
 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="text()|@*">
 <xsl:value-of select="."/>

</xsl:template>

<xsl:template match="processing-instruction()|comment()"/>

The first template says “for all element names and the root of the source tree, process
content.” The second template copies all text nodes and attributes, and the third sup-
presses the copying of processing instructions and comments.

For related information, see

• section 4.1, “Comments,” page 84

• section 4.5, “Processing instructions,” page 106

• and section 5.5, “Extensions to XSLT,” page 143 for more on extension
namespaces

• section 6.5, “Non-XML output,” page 202
• section 6.10, “XML declarations,” page 228

6.9 VALID XML OUTPUT: INCLUDING DOCTYPE DECLARATIONS
A valid XML document is one that has a document type (or “DOCTYPE”) declaration
and conforms to the DTD in that document type declaration.

��� An XML document with no DOCTYPE declaration isn’t valid, but it can
still be a legal XML document as long as it’s well formed. “Valid” is a tech-
nical term referring to the presence of and conformance to a DOCTYPE
declaration.

A DOCTYPE declaration can include DTD declarations as an internal DTD subset
between square brackets, like this:
<!DOCTYPE chapter [
<!ELEMENT chapter (title,para+)>

<!ELEMENT title (#PCDATA)>
<!ELEMENT para (#PCDATA)>

]>
VALID XML OUTPUT 225

or it can point to a DTD declaration stored in a separate file like this:

<!DOCTYPE chapter SYSTEM "../dtds/chapter.dtd">

The SYSTEM identifier tells the XML parser where to find the DTD file on the sys-
tem. An optional PUBLIC identifier can specify another string for the parser to use
when locating a DTD file. These usually use a string similar to the following, which
avoids any system-specific information to make the document more portable across
different systems:
<!DOCTYPE chapter PUBLIC PUBLIC "-//OASIS//DTD DocBook XML//EN"
 "../dtds/chapter.dtd">

The XML parser should look up this PUBLIC identifier somewhere to find the exact
location of the local copy of the DTD file. (Proposals exist for the format and location
of the lookup table, but none has caught on enough to be a widespread standard in
the XML world.) If it can’t, it uses the SYSTEM identifier following the PUBLIC iden-
tifier. (In the example above, the SYSTEM identifier doesn’t need the word “SYS-
TEM”. Because it’s a required parameter. The XML parser knows what it is.)

To create valid XML documents using XSLT, a stylesheet must add a DOCTYPE dec-
laration to the result tree. Because a DOCTYPE declaration isn’t an element or a processing
instruction, standard methods for adding those to your result tree won’t accomplish this.
Instead, an XSLT processor knows that it must create a DOCTYPE declaration in your
result document when it sees certain specialized attributes in an xsl:output element.

The most important attribute of the xsl:output element is the method
attribute, which specifies whether the output document is XML, HTML, or text. Val-
ues of “html” or “text” for this attribute specify special treatment which makes it easier
to create certain kinds of Web pages and plain text documents; (see section 6.1.2,
“HTML as output,” page 190, and section 6.5, “Non-XML output,” page 202, for
more on these). A value of “xml” is the default, so if you see no xsl:output instruc-
tion in a stylesheet, its result tree is supposed to represent an XML document.

The xsl:output instruction has other attributes that you can use to control
aspects of your XML output, and two of these attributes let you add SYSTEM and PUB-
LIC declarations to a DOCTYPE declaration in your result. If your xsl:output ele-
ment has a doctype-system attribute, the XSLT processor adds a DOCTYPE
declaration to the result tree with that attribute’s value as its SYSTEM identifier. If it
also has a doctype-public attribute, it adds this attribute’s value to the result’s
DOCTYPE declaration as a PUBLIC identifier. (An XSLT processor ignores an
xsl:doctype-public attribute without an accompanying doctype-system
attribute, because an XML document can’t have a PUBLIC identifier without a SYS-
TEM identifier.)

The following example source document conforms to the DocBook DTD:

<chapter><title>Chapter 1</title>

 <para>More unexpert, I boast not: them let those</para>
 <para>Contrive who need, or when they need, not now.</para>
226 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

 <para>For while they sit contriving, shall the rest,</para>

 <para>Millions that stand in Arms, and longing wait</para>
</chapter>

The following stylesheet just copies it to the result tree. Because the stylesheet’s
xsl:output instruction includes both doctype-system and doctype-public
attribute specifications, the result will include a DOCTYPE declaration with both of
these identifiers:

<!-- xq449.xsl: converts xq448.xml into xq450.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:output method="xml" doctype-system="../dtds/docbookx.dtd"
 doctype-public="-//OASIS//DTD DocBook XML//EN"/>

<xsl:template match="@*|node()">
 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>

</xsl:template>

</xsl:stylesheet>

The stylesheet could have had different instructions after that xsl:output element
to rearrange, rename, or delete the elements, or to perform any of the other XSLT
tricks possible on the source tree’s nodes as they’re copied to the result tree. The
DOCTYPE declaration added to the result tree would still look like the one produced
by the stylesheet and input document above, as shown here:

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE chapter
 PUBLIC "-//OASIS//DTD DocBook XML//EN" "../dtds/docbookx.dtd">

<chapter><title>Chapter 1</title>
 <para>More unexpert, I boast not: them let those</para>

 <para>Contrive who need, or when they need, not now.</para>
 <para>For while they sit contriving, shall the rest,</para>

 <para>Millions that stand in Arms, and longing wait</para>
</chapter>

How does the XSLT processor know what to put for the document type (the “chap-
ter” part in “DOCTYPE chapter”)? It knows the root element of the document it’s
creating in the result tree, and that’s what an XML document type is: the element that
serves as the document’s root element.

If the method attribute of the stylesheet’s xsl:output element has a value of
“text”, then a DOCTYPE declaration for the result tree wouldn’t make any sense. If
method has a value of “html”, a DOCTYPE declaration might make sense. Some
Web pages, especially XHTML documents, actually do conform to a DTD, so spec-
ifying doctype-system and doctype-public attribute values for such an
xsl:output element method attribute can be useful.
VALID XML OUTPUT 227

The DOCTYPE declarations added this way can only point to external DTD files.
XSLT offers no way to create a result tree DOCTYPE declaration with an internal DTD
subset—that is, with DTD declarations between the square brackets, as shown in the
first example. The DTD named in your doctype-system attribute must have all
the declarations that your document needs.

6.10 XML DECLARATIONS

The XML declaration at the beginning of an XML document is not necessary, but it’s
the best way to say “this is definitely an XML document and here’s the release of XML
to which it conforms.” The following is typical:

<?xml version="1.0"?>

������� Despite its beginning and ending question mark, an XML declaration is not
a processing instruction; it’s a separate kind of markup declaration. In fact,
the XML specification explicitly prohibits the processing instruction target
(the name right after a processing instruction’s opening question mark)
from being “xml” or “XML” in order to prevent a processing instruction
from being confused with an XML declaration.

An XSLT processor’s default behavior is to add an XML declaration to the beginning
of an XML document created in the result tree. If your stylesheet includes an
xsl:output instruction with a method value of “text” or “html”, the XSLT pro-
cessor doesn’t consider the result tree’s document to be XML, so it won’t add an XML
declaration. If method is “xml” or the stylesheet has no xsl:output element (in
which case the default value of “xml” is assumed), the result is considered an XML
document. To show the simplest case, we’ll apply the simplest possible stylesheet

<!-- xq453.xsl: converts xq454.xml into xq455.xml -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0"/>

to this little document:

<test>Dagon his Name, Sea Monster</test>

The result, thanks to XSLT’s built-in template rules, shows the element’s character
data with the XML declaration preceding it:

<?xml version="1.0" encoding="utf-8" ?>Dagon his Name, Sea Monster

Although an XML declaration is optional, when it is included, it must have the ver-
sion information. As I write this, 1.0 is the only version of the XML specification
available. In the example above, after the version information, the XML declaration
includes an encoding declaration to tell us how the characters in the document are
encoded. While the XML specification considers an encoding declaration to be
optional when the document is encoded as UTF-8 or UTF-16, the XSLT specification
228 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

says that XSLT processors must add one with a value of “utf-8” or “utf-16” if no other
encoding value is specified.

You can specify one yourself or change the version value by adding encoding
and version attributes to an xsl:output element in your stylesheet. The follow-
ing stylesheet adds them:

<!-- xq456.xsl: converts xq454.xml into xq457.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="xml" version="1.1" encoding="utf-16"/>
</xsl:stylesheet>

Using the same input as the previous example this produces the following (although
it may not look right in text editors that can't handle UTF-16):

<?xml version="1.1" encoding="utf-16" ?>Dagon his Name, Sea Monster

What if you don’t want an XML declaration in the result of your transformation? For
example, I rarely show them in the result of this book’s examples because I wanted to
make the examples as concise as possible. I suppressed them by adding an omit-
xml-declaration attribute to most of the sample stylesheets’ xsl:output ele-
ments, like this:

<!-- xq458.xsl: converts xq454.xml into xq459.txt -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="xml" omit-xml-declaration="yes"/>
</xsl:stylesheet>

The output of this stylesheet applied to the earlier XML document is identical to the
output created with the earlier stylesheet, minus the XML declaration:

Dagon his Name, Sea Monster

6.11 WHITESPACE: PRESERVING AND CONTROLLING

XML considers four characters to be whitespace: the carriage return, the linefeed, the
tab, and the spacebar space. Microsoft operating systems put both a carriage return
and a linefeed at the end of each line of a text file, and people usually refer to the
combination as the “carriage return.”

XSLT offers several techniques for controlling whitespace in your result docu-
ment. It’s important, however, to remember two things if you get frustrated over a lack
of control:

• XSLT is an XML application that was originally designed to convert XML docu-
ments into XML documents.

• XML applications often seem to take a cavalier attitude toward whitespace
because the rules about the places in an XML document where whitespace
doesn’t matter sometimes give these applications free rein to add or remove
whitespace in certain places.
WHITESPACE: PRESERVING AND CONTROLLING 229

The moral of the story is that when you’re using XSLT to create XML documents,
you shouldn’t worry too much about whitespace. When using it to create text docu-
ments and the whitespace isn’t coming out the way you want, remember that XSLT is
a transformation language, not a formatting language, and another tool may be nec-
essary to give you the control you need. Extension functions may also provide relief.
String manipulation is one of the most popular reasons for writing these functions.
(See section 5.5.2, “Using built-in extension functions,” page 146, for more. Also see
section 3.10, “Empty elements: creating, checking for,” page 67, for additional back-
ground on some tricks that whitespace can play in XSLT.)

6.11.1 xsl:strip-space and xsl:preserve-space

The xsl:strip-space instruction lets you specify source tree elements that
should have whitespace text nodes (that is, text nodes composed entirely of white-
space characters) stripped.

Let’s look at how this element can affect the following sample source document:

<colors>

<color>red</color>

<color> yellow </color>

<color>
blue

</color>

<!--

Next color element has whitespace content.
-->

<color> </color>

</colors>

To establish a baseline, this first stylesheet has no xsl:strip-space element. It’s
just an identity stylesheet—that is, a stylesheet that copies the source tree as is to the
result tree.

<!-- xq506.xsl: converts xq505.xml into xq507.xml -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="@*|node()">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

The result looks just like the source:
230 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

<colors>

<color>red</color>

<color> yellow </color>

<color>
blue

</color>

<!--

Next color element has whitespace content.
-->

<color> </color>

</colors>

Now we add an xsl:strip-space element to have the stylesheet strip whitespace
text nodes from the color elements:

<!-- xq508.xsl: converts xq505.xml into xq509.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:strip-space elements="color"/>

<xsl:template match="@*|node()">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

When applied to the same source tree document, the result looks identical, except
that the last color element is now an empty element. In the source tree, the ele-
ment’s only content was a text node of whitespace characters, and this node has been
stripped:

<colors>

<color>red</color>

<color> yellow </color>

<color>
blue

</color>

<!--

Next color element has whitespace content.

-->
<color/>

</colors>
WHITESPACE: PRESERVING AND CONTROLLING 231

Now let’s tell the XSLT processor to strip the whitespace nodes from the parent colors
element instead of the color elements:

<!-- xq510.xsl: converts xq505.xml into xq511.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:strip-space elements="colors"/>

<xsl:template match="@*|node()">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

This has a more drastic effect, because the colors element had many more white-
space-only text nodes—all those carriage returns between the color elements. The
only carriage returns in the whole document that made it to the result document are
the ones that were either inside a color element (before and after “blue”) or inside the
comment:

<colors><color>red</color><color> yellow </color><color>
blue

</color><!--
Next color element has whitespace content.

--><color> </color></colors>

You can list more than one element type name in the xsl:strip-space instruc-
tion’s elements attribute, as long as their names are separated by whitespace. You
can also use an asterisk as this attribute’s value to tell the XSLT processor to strip
whitespace text nodes from all the elements in the source tree.

The xsl:preserve-space instruction does the opposite of the xsl:strip-
space instruction. For all elements listed in its elements attribute, the XSLT pro-
cessor will leave whitespace text nodes alone. By default, the XSLT processor treats all
elements as xsl:preserve-space elements, so you only need it to override an
xsl:strip-space instruction. For example, if your source document has twenty
different element types and you want to strip whitespace nodes in all of them except
the codeListing and sampleOutput elements, you don’t have to list the other
eighteen in an xsl:strip-space element’s elements attribute. Instead, use an
asterisk for the xsl:strip-space element’s elements attribute value and list the
two exceptions as the xsl:preserve-space element’s elements attribute value.

<!-- xq512.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>
232 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

<xsl:strip-space elements="*"/>

<xsl:preserve-space elements="codeListing sampleOutput"/>

<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

6.11.2 Indenting

Setting the xsl:output element’s indent attribute to a value of “yes” tells the
XSLT processor that it may add additional whitespace to the result tree. The default
value is “no.”

������� An indent value of “yes” means that an XSLT processor may add whitespace
to the result. The processor is not required to add whitespace, however, so
if setting this value doesn’t have the effect you desire, try it with a different
XSLT processor. Or, check the processor’s documentation. The Xalan C++
XSLT processor, for example, indents element’s zero spaces as default, but
this figure can be reset with the -INDENT command line parameter.

The following stylesheet is the identity stylesheet with the xsl:output element’s
indent value set to “yes”. In other words, this stylesheet copies all the nodes of the
source tree document to the result tree without making any changes, except that the
XSLT processor may add more whitespace:

<!-- xq514.xsl: converts xq516.xml into xq517.xml -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes" indent="yes"/>

<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

With an XSLT processor that does add whitespace, the stylesheet turns this source
document

<chapter><title>My Chapter</title>

<para>This paragraph introduces the chapter's sections.</para>
<sect1><title>Section 1 of "My Chapter"</title>

<para>Here is the first section's first paragraph.</para>
<para>Here is the first section's second paragraph.</para>

</sect1>
<sect1><title>Section 2 of "My Chapter"</title>

<para>Here is the first section's first paragraph.</para>
WHITESPACE: PRESERVING AND CONTROLLING 233

<sect2><title>Section 2.2</title>

<para>This section has a subsection.</para>
</sect2>

</sect1>
</chapter>

into this:

<chapter>

<title>My Chapter</title>

<para>This paragraph introduces the chapter's sections.</para>

<sect1>
<title>Section 1 of "My Chapter"</title>

<para>Here is the first section's first paragraph.</para>

<para>Here is the first section's second paragraph.</para>

</sect1>

<sect1>

<title>Section 2 of "My Chapter"</title>

<para>Here is the first section's first paragraph.</para>

<sect2>
<title>Section 2.2</title>

<para>This section has a subsection.</para>

</sect2>

</sect1>

</chapter>

The added indenting makes the parent-child and sibling relationships of the elements
much clearer, because a child element’s tags are indented further than a parent ele-
ment’s tags, and siblings are all indented to the same level. When someone gives you
an XML document with no DTD or schema and you need to figure out its structure,
a pass through this little stylesheet is a great first step.

The XSLT specification warns us that it’s “usually not safe” to set indent to
“yes” with documents that contain elements that mix character data with child ele-
ments. For example, the first color child of the colors element in the following
document has the string “red:” as character data, followed by three shade elements
that are children of that color element. The second color element has only char-
acter data content (the string “yellow”), and the third one has a structure similar to
the first one:

<colors>
<color>red:

<shade>fire engine</shade>
<shade>candy apple</shade>
234 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

<shade>brick</shade>

</color>
<color>yellow</color>

<color>blue:
<shade>navy</shade>

<shade>robin's egg</shade>
<shade>cerulean</shade>

</color>
</colors>

The same stylesheet indents the elements of this document, but not the first shade
element in the first and third color elements:

<colors>

<color>red:

<shade>fire engine</shade>

<shade>candy apple</shade>

<shade>brick</shade>

</color>

<color>yellow</color>

<color>blue:

<shade>navy</shade>

<shade>robin's egg</shade>

<shade>cerulean</shade>

</color>

</colors>

The stylesheet doesn’t indent those two shade elements because that would add
character data to the document. Adding whitespace between two elements (for exam-
ple, between a </color> end-tag and a <color> start-tag in the example) doesn’t
affect a document’s contents, but adding it within an element that has character data
content adds text that an XML parser considers significant—in other words, it
changes the content of the document.

To summarize, an indent value of “yes” is useful if every element in your source
document has either character data and no elements as content (such as the shade
elements above) or elements and no character data as content (such as the colors
element in the example), but can lead to unpredictability if your source document has
elements that mix child elements with character data such as the color elements
above. The spaces that indent the other shade elements are also inside the “red”
color element, but because this whitespace isn’t being added to existing character
data at those positions, the text nodes that they’re in are pure whitespace, so the XML
processor will ignore them. (It’s a tricky concept. See section 6.11.1, “xsl:strip-space
and xsl:preserve-space,” page 230, for more on this.)
WHITESPACE: PRESERVING AND CONTROLLING 235

6.11.3 Adding and removing whitespace with xsl:text

The xsl:text instruction adds a text node to the result tree. When result tree
whitespace characters—in particular, carriage returns—aren’t coming out the way you
want them, this element is handy for both adding and preventing whitespace in your
result document.

For example, let’s say you want to print out the children of this employee ele-
ment with spaces or carriage returns between them:

<employee hireDate="09/01/1998">
<last>Herbert</last>

<first>Johnny</first>
<salary>95000</salary>

</employee>

In this template rule, the comment shows that a space exists after the xsl:apply-
templates element that adds the hireDate attribute value, and obviously a car-
riage return exists after that comment and the second and third xsl:apply-
templates element.

<!-- xq529.xsl: converts xq528.xml into xq530.txt -->

<xsl:template match="employee">

<xsl:apply-templates select="@hireDate"/> <!-- note space -->

<xsl:apply-templates select="first"/>

<xsl:apply-templates select="last"/>
</xsl:template>

Because an XML parser ignores whitespace between elements if that whitespace is the
only character data between those elements, the XML parser that reads in the
stylesheet and hands it to the XSLT processor won’t hand over that space and those
carriage returns, so the template creates this result from the source document:

09/01/1998JohnnyHerbert

The xsl:text element is a great way to say “don’t throw this whitespace out.” As
explained in section 6.11.1, “xsl:strip-space and xsl:preserve-space,” page 230, ele-
ment types in your source document can be designated as whitespace-stripping or
whitespace-preserving elements. XSLT stylesheets are XML documents too, and
xsl:text elements are the only whitespace-preserving elements in those documents.

This revision of the previous template illustrates how xsl:text elements with
a single space as content ensure that those spaces end up in the result:

<!-- xq531.xsl: converts xq528.xml into xq532.txt -->

<xsl:template match="employee">
<xsl:apply-templates select="@hireDate"/><xsl:text> </xsl:text>

<xsl:apply-templates select="first"/><xsl:text> </xsl:text>

<xsl:apply-templates select="last"/>

</xsl:template>
236 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

When applied to the same source document, the revised stylesheet creates a result
with spaces separating the values:

09/01/1998 Johnny Herbert

The xsl:text elements in this next version of the template each have a single car-
riage return as their contents instead of a single space:

<!-- xq533.xsl: converts xq528.xml into xq534.txt -->
<xsl:template match="employee">

<xsl:apply-templates select="@hireDate"/><xsl:text>
</xsl:text>

<xsl:apply-templates select="first"/><xsl:text>
</xsl:text>

<xsl:apply-templates select="last"/>
</xsl:template>

With the same source document used again, the result of this template has each value
separated by a carriage return:

09/01/1998
Johnny

Herbert

This last template isn’t indented very nicely. For those two xsl:text elements to
each have a single, and only a single, carriage return as their contents, their end-tags
must be right at the beginning of the line after the start-tag. If they were indented with
the rest of the child elements of the xsl:apply-templates element, like this,

<!-- xq535.xsl: converts xq528.xml into xq536.txt -->

<xsl:template match="employee">
<xsl:apply-templates select="@hireDate"/><xsl:text>

</xsl:text>
<xsl:apply-templates select="first"/><xsl:text>

</xsl:text>
<xsl:apply-templates select="last"/>

</xsl:template>

the XSLT processor would add the carriage return and also the two spaces used to
indent those end-tags before each value:

09/01/1998

Johnny
Herbert

One handy trick to get around this indenting problem and make stylesheets more
readable is to declare a general entity that has an xsl:text element with a space or
carriage return as its contents and to then reference that entity in the document. This
next version of the stylesheet does so for both characters, and references these entities
to put a carriage return after the hireDate value and a space after the first value:

<!-- xq537.xsl: converts xq528.xml into xq538.txt -->

<!DOCTYPE stylesheet [
WHITESPACE: PRESERVING AND CONTROLLING 237

<!ENTITY space "<xsl:text> </xsl:text>">

<!ENTITY cr "<xsl:text>
</xsl:text>">

]>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="employee">
<xsl:apply-templates select="@hireDate"/>&cr;

<xsl:apply-templates select="first"/>&space;
<xsl:apply-templates select="last"/>

</xsl:template>

</xsl:stylesheet>

The result has the carriage return and space right where the entity references put
them:

09/01/1998

Johnny Herbert

Usually, stylesheets declare entities like this when they need to be used repeatedly in a
document. If your stylesheet needs to have many carriage returns or single spaces
inserted, declaring entities for them in this manner is often worthwhile because &cr;
and &space; are easier to write over and over than the text strings they represent.
(See section 4.2, “Entities,” page 87, for more on the use of entities in stylesheets.)

An XML processor will not delete a carriage return in an element with other char-
acter data, but sometimes you don’t want that carriage return. The xsl:text ele-
ment can help here, too, as easily as it can help to add carriage returns. For example,
if we want to add the contents of the preceding source document to the result tree with
the labels “Hire Date:” and “Name:” preceding each line, we might try

<!-- xq539.xsl: converts xq528.xml into xq540.txt -->
<!DOCTYPE stylesheet [

<!ENTITY space "<xsl:text> </xsl:text>">
<!ENTITY cr "<xsl:text>

</xsl:text>">
]>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="employee">

Hire Date:

<xsl:apply-templates select="@hireDate"/>&cr;

Name:

<xsl:apply-templates select="first"/>&space;

<xsl:apply-templates select="last"/>
</xsl:template>

</xsl:stylesheet>
238 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

The result shows a carriage return after each label:

Hire Date:

09/01/1998

Name:

Johnny Herbert

If we don’t want those carriage returns, we can wrap those labels in xsl:text ele-
ments. Doing so splits the carriage returns after those labels so that they are no longer
next to non-whitespace characters and will therefore be ignored by the XML proces-
sor that hands this stylesheet to the XSLT processor:

<!-- xq541.xsl: converts xq528.xml into xq542.txt -->
<xsl:template match="employee">

<xsl:text>Hire Date: </xsl:text>

<xsl:apply-templates select="@hireDate"/>&cr;

<xsl:text>Name: </xsl:text>

<xsl:apply-templates select="first"/>&space;

<xsl:apply-templates select="last"/>
</xsl:template>

The result has the labels on the same line as the relevant data:

Hire Date: 09/01/1998

Name: Johnny Herbert

Whether you’re trying to add carriage returns or delete them, the xsl:text instruc-
tion is great for controlling how carriage returns are added to your result tree.

6.11.4 Adding tabs to your output

A stylesheet can add tabs to output using the character reference “	”. For exam-
ple, let’s say we want to convert this source document into a text file that uses tabs to
line up columns of information:
<employees>

<employee hireDate="04/23/1999">

<last>Hill</last>
<first>Phil</first>

<salary>100000</salary>
</employee>

<employee hireDate="09/01/1998">

<last>Herbert</last>
<first>Johnny</first>

<salary>95000</salary>
</employee>

<employee hireDate="08/20/2000">
<last>Hill</last>

<first>Graham</first>
<salary>89000</salary>

</employee>

</employees>
WHITESPACE: PRESERVING AND CONTROLLING 239

Ample use of this character reference in this stylesheet

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>
<!-- xq524.xsl: converts xq525.xml into xq526.txt -->

<xsl:strip-space elements="*"/>

<xsl:template match="employees">

Last	First	Salary	Hire Date
----	-----	------	----------

<xsl:apply-templates/>
</xsl:template>

<xsl:template match="employee">
<xsl:apply-templates select="last"/>

<xsl:text>	</xsl:text>
<xsl:apply-templates select="first"/>

<xsl:text>	</xsl:text>
<xsl:apply-templates select="salary"/>

<xsl:text>	</xsl:text>
<xsl:apply-templates select="@hireDate"/><xsl:text>

</xsl:text>
</xsl:template>

</xsl:stylesheet>

produces this result from that source document:

Last First Salary Hire Date

---- ----- ------ ----------
Hill Phil 100000 04/23/1999

Herbert Johnny 95000 09/01/1998
Hill Graham 89000 08/20/2000

When the stylesheet’s first template sees an employees element, it adds a two-line
header to the result tree before applying the appropriate templates to the children of
the employees element: one line consists of the field names separated by “	”
character references, and another line contains several groups of hyphens, each group
separated by the same character reference.

The only possible child of the employees element is the employee element,
and its template rule individually applies templates (in this case, the default XSLT
template that outputs an element’s text content) to its children with the “	” char-
acter reference between each one. This character reference doesn’t always have to be
inside an xsl:text instruction (note that it’s not in the stylesheet’s first template),
but if it had been added without this element in the second template, the XSLT pro-
cessor would have ignored it. Remember, like carriage returns and the spacebar space,
tab characters are considered whitespace, and an XSLT processor ignores whitespace
characters between elements if they’re the only characters there and not enclosed by
an xsl:text instruction.
240 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

��� Although stylesheets are easier to read when elements are indented to show
their levels of nesting, if you’re concerned about controlling whitespace, ex-
traneous whitespace in your stylesheet can cause alignment problems with
your output. This is why this section’s examples are not always indented.

Defining a general entity for this “<xsl:text>	</xsl:text>” string can make the
stylesheet easier to read, especially if you call the entity “tab”:

<!DOCTYPE stylesheet [

<!ENTITY tab "<xsl:text>	</xsl:text>">

<!ENTITY cr "<xsl:text>

</xsl:text>">
]>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="text"/>
<!-- xq527.xsl: converts xq525.xml into xq526.txt -->

<xsl:template match="employees">
Last&tab;First&tab;Salary&tab;Hire Date

----&tab;-----&tab;------&tab;----------
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="employee">

<xsl:apply-templates select="last"/>&tab;
<xsl:apply-templates select="first"/>&tab;

<xsl:apply-templates select="salary"/>&tab;
<xsl:apply-templates select="@hireDate"/>&cr;

</xsl:template>

</xsl:stylesheet>

This stylesheet has the same effect as the previous one, but is easier to read. As long as
I was defining a “tab” entity, I defined a “cr” one as well for “carriage return,” which
also makes the stylesheet easier to read. (See section 4.2, “Entities,” page 87, for more
on defining and referencing entities in XSLT and XML.)

6.11.5 Normalizing space

Imagine that your source document has extra whitespace in places, but not consis-
tently, and you want to get rid of this whitespace to make the document consistent.
For example, the first employee element in the following example has no extra
spaces or carriage returns within its child elements, but the second one has plenty:

<employees>

<employee hireDate="09/01/1998">

<last>Herbert</last>
<first>Johnny</first>

<salary>95000</salary>
</employee>
WHITESPACE: PRESERVING AND CONTROLLING 241

<employee hireDate=" 04/23/1999">

<last>
Hill

</last>
<first>

Phil

</first>

<salary>100000
</salary>

</employee>

</employees>

A simple stylesheet to create comma-delimited versions of each employee’s data, like this,

<!-- xq546.xsl: converts xq543.xml into xq548.txt -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="employee">

<xsl:apply-templates select="@hireDate"/>

<xsl:text>,</xsl:text>
<xsl:apply-templates select="first"/>

<xsl:text>,</xsl:text>
<xsl:apply-templates select="last"/>

</xsl:template>

</xsl:stylesheet>

creates output that includes all that extra whitespace:

09/01/1998,Johnny,Herbert

04/23/1999,

Phil

,

Hill

The normalize-space() function, in addition to converting strings of multiple
space characters into a single space, deletes any leading and trailing spaces from the
string passed to it as an argument. (See section 5.7.1, “Extracting and comparing
strings,” page 153, for more on this function.) Using this function can solve the prob-
lem with the preceding stylesheet:

<!-- xq544.xsl: converts xq543.xml into xq547.txt -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="employee">
242 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

<xsl:value-of select="normalize-space(@hireDate)"/>

<xsl:text>,</xsl:text>
<xsl:value-of select="normalize-space(first)"/>

<xsl:text>,</xsl:text>
<xsl:value-of select="normalize-space(last)"/>

<!-- Following alternative won't work:
<xsl:apply-templates select="normalize-space(@hireDate)"/>

<xsl:text>,</xsl:text>
<xsl:apply-templates select="normalize-space(first)"/>

<xsl:text>,</xsl:text>
<xsl:apply-templates select="normalize-space(last)"/>

-->
</xsl:template>

</xsl:stylesheet>

Note the comment in the second half of the “employee” template rule. We can’t just
insert the normalize-space() function inside the select attributes of the pre-
vious stylesheet’s xsl:apply-templates instructions, because this function
returns a string, and xsl:apply-templates expects to see a node set expression
as the value of its select attribute. So, the template uses xsl:value-of instruc-
tions instead. The normalize-space() function works, and the result is format-
ted consistently:

09/01/1998,Johnny,Herbert

04/23/1999,Phil,Hill

6.12 GENERATING IDS AND LINKS

XSLT’s generate-id() function generates a unique ID for a node passed to it as
an argument. This ID starts with a letter so that you can use it as the value of an XML
ID attribute. For example, the following stylesheet copies an XML document and
adds a uid (“unique ID”) attribute to each chapter, sect1, and sect2 element.
The xsl:value-of instruction uses the generate-id() function in the
stylesheet’s single template to create a value for these attributes:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<!-- xq462.xsl: converts xq463.xml into xq464.xml -->

<xsl:template match="chapter | sect1 | sect2">

<xsl:copy>
<xsl:attribute name="uid">

<xsl:value-of select="generate-id(.)"/>

</xsl:attribute>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>
GENERATING IDS AND LINKS 243

<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

The stylesheet turns this XML document

<chapter>

<para>Then with expanded wings he steers his flight</para>
<figure><title>"Incumbent on the Dusky Air"</title>

<graphic fileref="pic1.jpg"/></figure>
<para>Aloft, incumbent on the dusky Air</para>

<sect1>
<para>That felt unusual weight, till on dry Land</para>

<figure><title>"He Lights"</title>
<graphic fileref="pic2.jpg"/></figure>

<para>He lights, if it were Land that ever burned</para>
<sect2>

<para>With solid, as the Lake with liquid fire</para>
<figure><title>"The Lake with Liquid Fire"</title>

<graphic fileref="pic1.jpg"/></figure>
</sect2>

</sect1>
</chapter>

into this:

<chapter uid="N134711680">
<para>Then with expanded wings he steers his flight</para>

<figure><title>"Incumbent on the Dusky Air"</title>
<graphic fileref="pic1.jpg"/></figure>

<para>Aloft, incumbent on the dusky Air</para>
<sect1 uid="N134683456">

<para>That felt unusual weight, till on dry Land</para>
<figure><title>"He Lights"</title>

<graphic fileref="pic2.jpg"/></figure>
<para>He lights, if it were Land that ever burned</para>

<sect2 uid="N134684064">
<para>With solid, as the Lake with liquid fire</para>

<figure><title>"The Lake with Liquid Fire"</title>
<graphic fileref="pic1.jpg"/></figure>

</sect2>
</sect1>

</chapter>

Your XSLT processor may generate different values with the generate-id() func-
tion. In fact, if you run the same stylesheet with the same input document a second
time, your XSLT processor may not generate the same ID values that it generated the
first time. However, if you call generate-id() more than once in one run with
the same node as an argument, the processor generates the same ID value each time
244 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

for that node. Because unique IDs are popular ways to identify link destinations, this
consistency of the generate-id() function makes it a great way to generate links.

For example, section 5.1.3, “‘For’ loops, iteration,” page 118, demonstrates
how to copy a document, such as the previous one, adding a list of all its illustrations
at the beginning of the result document. If we make the result tree version an HTML
file, we can use the generate-id function to turn each entry of this opening illustra-
tion list into an HTML link to the img element in the body of the document con-
taining the illustration:

<!-- xq465.xsl: converts xq463.xml into xq466.html -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="html"/>

<xsl:template match="chapter">

<html><body>

<!-- Generate a list of picture titles, with each

title linking to the picture in the poem below. -->
Pictures:

<xsl:for-each select="descendant::figure">

<xsl:value-of select="title"/>

</xsl:for-each>

<xsl:apply-templates/>
</body></html>

</xsl:template>

<xsl:template match="para">

<p><xsl:apply-templates/></p>
</xsl:template>

<xsl:template match="graphic">
<!-- Image and title as caption, centered. -->

<center>

<xsl:value-of select="../title"/></center>

</xsl:template>

<!-- Suppress figure title because "graphic" template

rule already added it to result tree. -->
<xsl:template match="figure/title"/>

</xsl:stylesheet>

With the source document above, this stylesheet creates the following HTML document:

<html>

<body>
Pictures:

"Incumbent on the Dusky Air"

GENERATING IDS AND LINKS 245

"He Lights"

"The Lake with Liquid Fire"

<p>Then with expanded wings he steers his flight</p>

<center>

"Incumbent on the Dusky Air"
</center>

<p>Aloft, incumbent on the dusky Air</p>

<p>That felt unusual weight, till on dry Land</p>

<center>

"He Lights"
</center>

<p>He lights, if it were Land that ever burned</p>

<p>With solid, as the Lake with liquid fire</p>

<center>

"The Lake with Liquid Fire"
</center>

</body>
</html>

The stylesheet uses the generate-id() ID twice:

• As the xsl:for-each instruction in the “chapter” template rule adds each
figure element’s title to the result tree for the “Pictures:” list at the begin-
ning of the result document, it puts each of these title elements inside of an
HTML a element to link to the appropriate picture in the main part of the doc-
ument. Each of these a elements has an href attribute to indicate the link desti-
nation. An href attribute that begins with a pound sign (“#”) looks for the link
destination in the same document. Specifically, it looks for another a element
with a name attribute value equal to the part after the pound sign in the link ori-
gin. For example, an a start-tag of links to an a element
with an start-tag elsewhere in the same document.

Instead of the string “a123” identifying each link destination, this stylesheet
uses the generate-id() function to make up an identifying string. Because
the graphic element node is passed to it as an argument, the function creates
an ID string for each of the three graphic elements: “N134691840”,
“N134692416”, and “N134757920”.

• To create the link destinations, the “graphic” template rule puts each HTML
img element in the result tree inside of an a element. These img elements use
the value of the source tree graphic elements’ fileref attributes as their
246 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

src value, and the a elements use the generate-id() function to create the
values for their name attributes. Passing this function an argument of “.” is the
same as passing it self::node(), which, in this case, means passing it the
graphic element node, so the XSLT processor generates an ID value for each
graphic node. These are the same three nodes for which the earlier use of the
generate-id() created IDs, and the XSLT processor creates the same three
values: “N134691840”, “N134692416”, and “N134757920”. When this HTML
file is displayed with a Web browser, each link in the opening “Pictures:” list will
now go to the corresponding picture in the document.

This consistency in the generate-id() function’s treatment of a particular node,
even if it generates an ID for it more than once, is the key to the function’s power.
These graphic elements didn’t even have IDs in the source document. With the help
of this function, their equivalent in the result document has them, and other ele-
ments in that document can use those IDs to link to them.

6.13 XSL AND XSLT: CREATING ACROBAT FILES

AND OTHER FORMATTED OUTPUT

XSL is the Extensible Stylesheet Language, a W3C standard for specifying the visual or
audio presentation of an XML document. “Visual presentation” refers to details such
as fonts, margins, bolding, italicizing, and other page layout issues. Audio presenta-
tion refers to the pitch, speed, volume, and other parameters of a spoken voice com-
municating a document. As I write this, with the XSL spec in Candidate
Recommendation status, I know of no program that can do anything with a
stylesheet that has audio properties specified, but several do exist that can turn XML
documents into attractive pages suitable for publishing.

XSLT’s relationship with XSL can be confusing. They have similar names, and
they both offer specialized elements that you assemble into stylesheets that convert
XML documents into something else. Technically, XSLT is a part of XSL; XSL was
designed to be a language for transforming and formatting documents, and the
“Transformations” part of this plan (the “T” in “XSLT”) proved so valuable that the
W3C’s XSL Working Group split XSLT into its own specification. Now, when people
refer to “XSL,” they usually mean the formatting part.

Before XSLT became its own spec describing the conversion of XML documents
into other XML documents (or even into non-XML documents), the original plan for
this transformation language was to use it to convert XML documents into trees of for-
matting objects. Formatting objects are specific elements from the XSL namespace that
describe the presentation of the document’s information. Although XSLT was split out
to be separate, it’s still very good for this.
CREATING FORMATTED OUTUT 247

Before we look at an example using XSLT to create an XSL formatting object docu-
ment, let’s consider a short XSL document created by hand so that we can get a feel
for the structure of formatting object documents:

<!-- xq501.xml -->

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>

<fo:simple-page-master>

<fo:region-body/>
</fo:simple-page-master>

</fo:layout-master-set>

<!-- Optional fo:declaration elements can go here. -->

<fo:page-sequence>

<!-- A sequence of pages. -->

<fo:flow>

<fo:block>Him thus intent Ithuriel with his spear</fo:block>
</fo:flow>

</fo:page-sequence>

</fo:root>

A formatting object stylesheet document uses elements from the http://www.w3.org/
1999/XSL/Format namespace. The namespace prefix declared for this namespace is
usually “fo” (for “formatting object”). The document element is fo:root, an ele-
ment with two required child elements:

1 fo:layout-master-set has the “masters” that set constraints for pages,
regions, and other general aspects of the document’s layout.

2 fo:page-sequence describes how to create a specific sequence of pages in
the document. There’s no limit to how many of these a document can have.

Figure 6.3 An XSLT processor can convert an XML file into a formatting object XML file

suitable for rendering by an XSL processor.
248 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

In the preceding sample document, the fo:layout-master-set uses the simplest
master, fo:simple-page-master, to set the relevant values to their defaults.

An fo:page-sequence typically has a series of fo:flow flow object ele-
ments that make up the actual content of the document. Our example has one
fo:flow element to add the phrase “Him thus intent Ithuriel with his spear” to the
formatting object tree.

An XSL processor turns these elements into whatever is appropriate for the out-
put formats it supports. FOP (“Formatting Object Processor”), the XSL renderer orig-
inally written by James Tauber and available through the XML Apache project
(xml.apache.org), can turn the preceding document into a PDF file that looks like that
in figure 6.4 when displayed in Adobe Acrobat.

The text is right up against the left and top edges of the “paper,” because no margins
were specified, so most laser printers wouldn’t be able to print this little document.
It’s still an impressive achievement, though. With a little XML markup and an open-
source program unaffiliated with any major software company, we’ve created a work-
ing Acrobat document.

Let’s look at how we can use XSLT to create a more complex XSL document suit-
able for FOP rendering. For input, the following poem document has a title ele-
ment and an in-line prop element for proper names. Elements of both types will be
formatted differently from the rest of the poem’s text. We want line breaks after each
verse of the poem, and we want a little extra space after the title in the final Acro-
bat version:

<poem>
<title>"Paradise Lost" excerpt</title>

<verse>Him thus intent <prop>Ithuriel</prop> with his spear</verse>

Figure 6.4 Adobe Acrobat displaying a PDF file created by FOP from a simple XSL

formatting object file
CREATING FORMATTED OUTUT 249

<verse>Touched lightly; for no falsehood can endure</verse>

<verse>Touch of Celestial temper, but returns</verse>
<verse>Of force to its own likeness: up he starts</verse>

<verse>Discovered and surprised.</verse>
</poem>

Our XSLT stylesheet will read this poem document and convert it to an XSL
stylesheet, or “formatting object file,” suitable for conversion into an Acrobat file by
FOP. The XSLT stylesheet, which converts this document to an XSL formatting object
file, declares two namespaces in its xsl:stylesheet start-tag: one to identify the
XSLT instructions to the XSLT processor and one to identify the XSL elements to the
rendering program. (See section 4.3, “Namespaces,” page 92, for more on the use of
namespaces in XSLT.)

<!-- xq503.xsl: converts xq502.xml into xq504.xml -->
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:template match="/">

<fo:root>

<fo:layout-master-set>
<fo:simple-page-master>

<fo:region-body margin-top="36pt"
margin-bottom="36pt" margin-left="36pt"

margin-right="36pt"/>
</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence>

<fo:flow flow-name="xsl-region-body">
<xsl:apply-templates/>

</fo:flow>
</fo:page-sequence>

</fo:root>

</xsl:template>

<xsl:template match="verse">
<fo:block font-size="10pt" font-family="Times">

<xsl:apply-templates/>
</fo:block>

</xsl:template>

<xsl:template match="title">

<fo:block font-size="14pt" font-weight="bold"

space-before.optimum="12pt"
space-after.optimum="12pt">

<xsl:apply-templates/>
</fo:block>

</xsl:template>
250 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

<xsl:template match="prop"><!-- proper names -->

<fo:inline font-style="italic">
<xsl:apply-templates/>

</fo:inline>
</xsl:template>

</xsl:stylesheet>

When the XSLT processor finds the root (“/”) of the source tree, the stylesheet’s first
template rule adds the result XSL stylesheet’s fo:root document element to the
result tree. It also adds that fo:root element’s fo:layout-master-set and
fo:page-sequence child elements to the result tree. The fo:layout-master-
set element resembles the one in the earlier example except that the fo:region-
body element in its fo:simple-page-master doesn’t leave all its parameters at
their default values. Instead, it sets the top, bottom, left, and right margins to 36
points, or half an inch.

The fo:page-sequence element has one fo:flow object, and this element’s
contents in the result tree will be determined by the xsl:apply-templates
instruction between the fo:flow tags in the XSLT stylesheet. Regardless of what this
stylesheet’s template rules do with the nodes that the XSLT processor finds hanging
off the source tree’s root node, the nodes that they add to the result tree will be
between these fo:flow tags in the result document.

The stylesheet’s three remaining template rules turn parts of the poem document
into formatting objects to go inside this fo:flow element. The first of the three sets
the verse elements to 10 point text in the Times font family. The second sets the
title element to 14 point bold text. The font-family is left at the default value,
which happens to be Helvetica for the FOP XSL formatter.

The “title” template rule also sets space-before.optimum and space-
after.optimum attribute values. Related attribute values include space-
before.minimum, space-before.maximum, and the corresponding space-
after attribute values. The opportunity to set three different parameters to control
the amount of allowable space before or after a given text block lets you specify exactly
how much leeway you want to give to a page layout engine’s automated decisions
about these settings.

The poem’s title and verse elements are both added to the formatting object
result tree as fo:block elements. They’re each their own block of text. You can set
block-oriented parameters for them such as the amount of space to put before and
after each block.

The final template rule adds a fo:inline element to the result tree for prop
elements. This tells the XSL processor to treat elements of this type as part of their
surrounding block instead of treating each one as its own block. Emphasized words,
technical terms set in a different font, and, in this case, a single proper name to be
italicized are typical elements that make good candidates for inline rendering instead
of block rendering.
CREATING FORMATTED OUTUT 251

When this stylesheet is run with the poem source document shown previously,
it creates the following result (I added carriage returns and indenting to make the
result easier to read, but these won’t affect the FOP program’s treatment of them):

<?xml version="1.0" encoding="UTF-8"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
<fo:layout-master-set><fo:simple-page-master>

<fo:region-body margin-top="36pt" margin-bottom="36pt"
margin-left="36pt" margin-right="36pt"/>

</fo:simple-page-master>
</fo:layout-master-set><fo:page-sequence><fo:flow>

<fo:block font-size="14pt" font-weight="bold"
space-before.optimum="12pt"

space-after.optimum="12pt">"Paradise Lost" excerpt</fo:block>
<fo:block font-size="10pt"

font-family="Times">Him thus intent
<fo:inline font-style="italic">Ithuriel</fo:inline>

with his spear</fo:block>
<fo:block font-size="10pt" font-family="Times">

Touched lightly; for no falsehood can endure</fo:block>
<fo:block font-size="10pt" font-family="Times">

Touch of Celestial temper, but returns</fo:block>
<fo:block font-size="10pt" font-family="Times">

Of force to its own likeness: up he starts</fo:block>
<fo:block font-size="10pt" font-family="Times">

Discovered and surprised.</fo:block>
</fo:flow></fo:page-sequence></fo:root>

FOP turns this document into the PDF file displayed by Acrobat in figure 6.5.

Figure 6.5

Adobe Acrobat

displaying a PDF

file created by FOP

from a more com-

plex XSL format-

ting object file
252 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

A glance through the W3C XSL specification (see http://www.w3.org/TR/xsl) reveals
many other settings that you can assign to your formatting objects along with those
shown in the examples above. These include fo:page-number, fo:list-item,
fo:table-and-caption, and many others.

For now, FOP only converts formatting object files to Acrobat PDF files, but
that’s pretty useful. Other XSL engines will certainly appear to convert these files to
other formats, whether RTF or other vendors’ own rendering formats. Any given ren-
dering engine may not support the entire XSL spec. For example, it will be awhile
before all audio properties are supported by one package, and some visual ones may
be difficult to support as well. Still, it’s a great way to create nice-looking documents
on multiple platforms using nothing but free software and open standards.

6.14 SPLITTING UP OUTPUT INTO MULTIPLE FILES

A classic XML transformation task is the splitting of a large source document into
multiple result documents. For example, when preparing a large book for web deliv-
ery, you probably want to split it up so that each chapter gets converted to a separate
HTML file, because the entire book would be too large to send to a web browser.

The XSLT 1.0 specification has no provisions for splitting up output into multi-
ple documents. This ability is so useful, however, that nearly every XSLT processor
offers an extension element that lets you do this.

Instead of picking one XSLT processor’s syntax for splitting up output docu-
ments, or trying to cover all of them, this section shows the syntax for doing so with
the xsl:document element described in the W3C’s XSLT 1.1 Working Draft.
Although the W3C XSL Working Group eventually decided to discontinue work on
XSLT 1.1 in order to fully devote their energy to XSLT 2.0, XSLT 1.1’s xsl:docu-
ment element is based on several existing implementations of this potential XSLT fea-
ture and will provide a model for future implementations until a XSLT 2.0
Recommendation eventually makes the xsl:document syntax official.

������� Double-check your own processor’s syntax for splitting up a result tree
into multiple documents. It may be a variation on the syntax shown in
this section.

Imagine that the following document is much bigger than it appears here. We want
to convert the document to HTML, and we want each chapter stored in its own sepa-
rate HTML file, for a total of three result documents.

<story>

<chapter><title>Chapter 1</title>

<para>A Dungeon horrible, on all sides round</para>
<para>More unexpert, I boast not: them let those</para>

</chapter>

<chapter><title>Chapter 2</title>
SPLITTING UP OUTPUT INTO MULTIPLE FILES 253

<para>Contrive who need, or when they need, not now.</para>

<para>For while they sit contriving, shall the rest</para>
</chapter>

<chapter><title>Chapter 3</title>
<para>Millions that stand in Arms, and longing wait</para>

<para>So thick a drop serene hath quenched their Orbs</para>
</chapter>

</story>

The following stylesheet converts our document into a set of HTML files:

<!-- xq560.xsl: converts xq552.xml into xq561.html (chap1.html),

xq562.html (chap2.html), and xq563.html (chap3.html) -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>

<xsl:template match="chapter">
<xsl:variable name="chapNum"><xsl:number/></xsl:variable>

<xsl:document href="chap{$chapNum}.html">

<html><body>

<xsl:apply-templates/>
</body></html>

</xsl:document>

</xsl:template>

<xsl:template match="chapter/title">
<h1><xsl:apply-templates/></h1>

</xsl:template>

<xsl:template match="para">

<p><xsl:apply-templates/></p>
</xsl:template>

</xsl:stylesheet>

The first template rule’s xsl:document element splits the source tree document,
putting each html element into its own result tree (and file). Its href attribute spec-
ifies a location for each output file, using a variable named chapNum in the href
value to create a different filename for each HTML file: chap1.html:

<html><body><h1>Chapter 1</h1>

<p>A Dungeon horrible, on all sides round</p>
<p>More unexpert, I boast not: them let those</p>

</body></html>

chap2.html:

<html><body><h1>Chapter 2</h1>
<p>Contrive who need, or when they need, not now.</p>

<p>For while they sit contriving, shall the rest</p>
</body></html>
254 CHAPTER 6 SPECIALIZED INPUT & OUTPUT

and chap3.html:

<html><body><h1>Chapter 3</h1>
<p>Millions that stand in Arms, and longing wait</p>

<p>So thick a drop serene hath quenched their Orbs</p>
</body></html>

In addition to href, the xsl:document element has other attributes that give you
much of the same control over the output that the attributes of the xsl:output
element give. For example, doctype-system and doctype-public give the
result document DOCTYPE declarations; and method eases the creation of plain text
and older format HTML files. There is also omit-xml-declaration, as well as
other attributes. (See section 6.9, “Valid XML output: including DOCTYPE declara-
tions,” page 225, section 6.1.2, “HTML as output,” page 190, section 6.5, “Non-
XML output,” page 202, and section 6.11.2, “Indenting,” page 233, for more on
how these attributes can control the format of your output.)
SPLITTING UP OUTPUT INTO MULTIPLE FILES 255

P A R T 3333
Appendices

Appendix A is a quick reference to XSLT syntax, showing you the various elements
that you can use in your XSLT stylesheets and their attributes, with pointers back to
the page in this book where the element is introduced.

Appendix B describes the use of several free and commercial XSLT processors,
showing how to process a sample document and stylesheet with them.

A P P E N D I X A

XSLT quick reference

A.1 Top-level elements 260
A.2 Instructions 263
A.3 No category 266
This quick reference to XSLT syntax divides up the elements from the XSLT namespace into
three categories:

• Top-level elements, which are children of the xsl:stylesheet element that give general
instructions about creating the result tree.

• Instruction elements, which tell the XSLT processor to add something to the result tree.

• Miscellaneous other elements: the xsl:stylesheet element, its synonym xsl:trans-
form, the xsl:import element, which is not considered a top-level element because it has
to come in the spreadsheet before any other top-level elements, and elements with specific
roles inside various instruction elements: xsl:when and xsl:otherwise from the
xsl:choose instruction, xsl:with-param from the xsl:call-template instruc-
tion, and xsl:sort from the xsl:apply-templates or xsl:for-each instructions

Terms such as “top-level,” “instruction,” and all the other terms you see used in this quick refer-
ence are defined in the Glossary. Also see section 5.11, “Using the W3C XSLT specification,”
page 182 for background on these terms.

The quick reference table uses DTD content model syntax, which is very similar to the reg-
ular expression syntax used by Perl and many other tools with their roots in Unix, to describe the
allowable content of each XSLT element as well as legal attribute values:
259

• A plus sign (+) means “one or more.”

• An asterisk (*) means “zero or more.”

• A question mark (?) means “zero or one”—in other words, that something is optional and
can appear only once.

• A comma separates two items in a series that must appear in that order. For example, the
content model of “when+,otherwise?” for xsl:choose means that this element consists of
one or more xsl:when elements followed by an optional xsl:otherwise element.

• A pipe symbol (|) separates two options in a choice. For example, ‘“yes” | “no”’ as the
potential values for the xsl:value-of element’s disable-output-escaping
attribute show that it can be either the literal string “yes” or the string “no”.

Quoted values show literal values as they must appear, and italics name a type of expression that
may be inserted. For example, the xsl:sort element’s data-type attribute’s legal values of
‘“text” | “number” | qname-but-not-ncname’ show that it can either be the literal strings “text” or
“number” or a QName that isn’t an NCName. (See the glossary for descriptions of both of
these terms.)

For each element’s attributes, the tables below have a column to show whether the attribute
is required and another to show whether it’s an attribute value template (AVT). The title of each
column also points to the page number where that XSLT element is introduced if it is covered
in this book.

A.1 TOP-LEVEL ELEMENTS

/ xsl:attribute-set (see page 80)

content xsl:attribute*

attributes required AVT

name= qname yes

use-attribute-sets= qnames

/ xsl:decimal-format

content Empty

attributes required AVT

name= qname

decimal-separator= char

grouping-separator= char

infinity= string

minus-sign= char

NaN= string
260 APPENDIX A XSLT QUICK REFERENCE

attributes required AVT

percent= char

per-mille= char

zero-digit= char

digit= char

pattern-separator= char

/ xsl:include (see page 128)

content Empty

attributes required AVT

href= uri-reference yes

/ xsl:key (see page 172)

content Empty

attributes required AVT

name= qname yes

match= pattern yes

use= expression yes

/ xsl:namespace-alias (see page 98)

content Empty

attributes required AVT

stylesheet-prefix= “#default” | prefix yes

result-prefix= “#default” | prefix yes

/ xsl:output (see page 192 and page 215)

content Empty

attributes required AVT

method= “xml” | “html” | “text” | qname-but-not-

ncname

version= nmtoken

encoding= string

omit-xml-declaration= “yes” | “no”

/ xsl:decimal-format (continued)
TOP-LEVEL ELEMENTS 261

standalone= “yes” | “no”

attributes required AVT

doctype-public= string

doctype-system= string

cdata-section-elements= qnames

indent= “yes” | “no”

media-type= string

/ xsl:param (see page 169)

content template

attributes required AVT

name= qname yes

select= expression

/ xsl:preserve-space (see page 230)

content Empty

attributes required AVT

elements= tokens yes

/ xsl:strip-space (see page 230)

content Empty

attributes required AVT

elements= tokens yes

/ xsl:template (see page 7)

content (param*, template)

attributes required AVT

match= pattern

name= qname

priority= number

mode= qname

/ xsl:output (see page 192 and page 215) (continued)
262 APPENDIX A XSLT QUICK REFERENCE

A.2 INSTRUCTIONS

/ xsl:variable (see page 164)

content template

attributes required AVT

name= qname yes

select= expression

/ xsl:apply-imports

content xsl:with-param*

/ xsl:apply-templates (see page 13)

content (xsl:sort | xsl:with-param)*

attributes required AVT

select= node-set-expression

mode= qname

/ xsl:attribute (see page 78)

content template

attributes required AVT

name= qname yes yes

namespace= uri-reference yes

/ xsl:call-template (see page 132)

content xsl:with-param*

attributes required AVT

name= qname yes

/ xsl:choose (see page 114)

content (when+, otherwise?)

/ xsl:comment (see page 85)

content template
INSTRUCTIONS 263

/ xsl:copy (see page 58)

content template

attributes required AVT

use-attribute-sets= qnames

/ xsl:copy-of (see page 59)

content Empty

attributes required AVT

select= expression yes

/ xsl:document (see page 247)

content template

attributes required AVT

href= uri-reference yes yes

method= “xml” | “html” | “text” | qname-but-not-

ncname

yes

version= nmtoken yes

encoding= string yes

omit-xml-declaration= “yes” | “no” yes

standalone= “yes” | “no” yes

doctype-public= string yes

doctype-system= string yes

cdata-section-elements= qnames yes

indent= “yes” | “no” yes

media-type= string yes

/ xsl:element (see page 48)

content template

attributes required AVT

name= qname yes yes

namespace= uri-reference yes

use-attribute-sets= qnames

/ xsl:fallback (see page 145)

content template
264 APPENDIX A XSLT QUICK REFERENCE

/ xsl:for-each (see page 143)

content (sort*, template)

attributes required AVT

select= node-set-expression yes

/ xsl:if (see page 111)

content template

attributes required AVT

test= boolean-expression yes

/ xsl:message (see page 114)

content template

attributes required AVT

terminate= “yes” | “no”

/ xsl:number (see page 208)

content Empty

attributes required AVT

level= “single” | “multiple” | “any”

count= pattern

from= pattern

value= number-expression

format= string yes

lang= nmtoken yes

letter-value= “alphabetic” | “tradi-

tional”

yes

grouping-separator= char yes

grouping-size= number yes

/ xsl:processing-instruction (see page 105)

content template

attributes required AVT

name= ncname yes yes
INSTRUCTIONS 265

A.3 NO CATEGORY

/ xsl:text (see page 89 and page 240)

content text (PCDATA)

attributes required AVT

disable-output-escaping= “yes” | “no”

/ xsl:value-of (see page 71)

content Empty

attributes required AVT

select= string-expression yes

disable-output-escaping= “yes” | “no”

/ xsl:variable (see page 164)

content template

attributes required AVT

name= qname yes

select= expression

/ xsl:import (see page 130)

content Empty

attributes required AVT

href= uri-reference yes

/ xsl:otherwise (see page 114)

content template

/ xsl:sort (see page 220)

content Empty

attributes required AVT

select= string-expression

lang= nmtoken yes

data-type= “text” | “number” | qname-but-not-ncname yes

order= “ascending” | “descending” yes

case-order= “upper-first” | “lower-first” yes
266 APPENDIX A XSLT QUICK REFERENCE

/ xsl:stylesheet (see page 8)

content (import*, top-level-elements)

attributes required AVT

id= id

extension-element-prefixes= tokens

exclude-result-prefixes= tokens

version= number yes

/ xsl:transform (see page 8)

content (import*, top-level-elements)

attributes required AVT

id= id

extension-element-prefixes= tokens

exclude-result-prefixes= tokens

version= number yes

/ xsl:when (see page 114)

content template

attributes required AVT

test= boolean-expression yes

/ xsl:with-param (see page 133)

content template

attributes required AVT

name= qname yes

select= expression
NO CATEGORY 267

A P P E N D I X B

Running XSLT processors

B.1 Running XSLT processors 269
B.2 Saxon 273
B.3 XT 274
B.4 iXSLT 275

B.5 Xalan-Java 276
B.6 Xalan-C++ 277
B.7 Sablotron 278
B.8 MSXSL 279
B.1 RUNNING XSLT PROCESSORS

Because the XSLT specification is about taking an XML document stored in a source
tree in memory and converting it into a result tree in memory, the specification delib-
erately avoids any talk of how to get a document into that source tree and out of that
result tree. (See section 1.1.2, “Documents, trees, and transformations,” page 6, for
more on this.) By doing this, the specification leaves XSLT processors more flexibility
in how they read the documents:

• An XSLT processor can be built into (or plugged into) a web browser. When
the browser reads in a document that has a stylesheet specified for it, the
browser applies the stylesheet to that document and displays, the result of the
transformation.

• An XSLT processor can be made available as a programming library in a particu-
lar programming language. The documentation with that XSLT processor tells
the user the syntax of that language to use in order to pass a document and
stylesheet to the XSLT processor and to get the result back.

• An XSLT processor can be run from a command prompt: the DOS command
prompt in a Windows operating system, a shell in a Unix-based operating system
such as Linux, or whatever command line is available in your operating system.
269

(See section 6.2, “Browsers and XSLT,” page 192, for information on the current
and future roles of XSLT processors in web browsers. For information on using an
XSLT processor from a programming library, see the documentation for that pro-
gramming library.)

XSLT processors run from a command line also have their own documentation.
Most have several things in common. This appendix describes a few popular and inter-
esting XSLT command line processors to give you a taste of what you can expect from
them as well as an awareness of the features that can make one stand out from the pack.
A printed book could never have an exhaustive, up-to-date list of XSLT processors. Use
this appendix as a starting point and then go to http://www.xmlsoftware.com/xslt to
explore what is currently available. Devotees of the Perl and Python programming lan-
guages in particular should go to http://www.xmlsoftware.com/xslt and check out this
web page’s offerings.

��� Command line XSLT processors and programming libraries are often
packaged together, because once you’ve created one, the other is easily in-
cluded. A programming library, then, may include a command line proces-
sor as an example of how to call the library’s XSLT processor. Or a
command line processor may include its source code so that you can use it
in your own projects without calling the processor from the command line.

All XSLT processors need to know two basic pieces of information: the source docu-
ment to read into the source tree, and the stylesheet to apply to the source tree docu-
ment. Although you’ll usually want to tell the XSLT processor what to do with the
result tree document, sometimes this isn’t a required parameter, because a command
line processor may scroll the result up your screen if you don’t specify a destination
for that output. At a Windows or UNIX command prompt, the greater-than charac-
ter (“>”) tells the operating system to send the output to a text file instead of the
screen, so this is a popular way to store an XSLT result tree document on these oper-
ating systems. For example, the following command line uses the Sablotron processor
to apply the xq553.xsl stylesheet to the xq338.xml input file and to store the output
in xq339.html:

sabcmd xq553.xsl xq338.xml > xq339.html

Another important piece of information to pass to an XSLT command line processor
is the value of any parameters that you want to set. The use of parameters in XSLT
stylesheets is described in section 5.8.2, “Parameters,” page 169. This appendix uses
an example from that section to demonstrate how to invoke each command line pro-
cessor. This way, you can see how an important aspect of running XSLT processors
varies from one processor to another.

Each section of this appendix shows how to apply this stylesheet

<!-- xq553.xsl: converts xq338.xml into xq339.html. -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
270 APPENDIX B RUNNING XSLT PROCESSORS

version="1.0">

<xsl:output method="html"/>

<xsl:param name="bodyTextSize">10pt</xsl:param>

<xsl:template match="winery">
<xsl:apply-templates/>

<xsl:text> </xsl:text>
<xsl:value-of select="../@grape"/>

</xsl:template>

<xsl:template match="product">

<i>
<xsl:apply-templates/></i>

</xsl:template>

<xsl:template match="year | price">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

to this document:

<wine grape="Cabernet">

<winery>Duckpond</winery>
<product>Merit Selection</product>

<year>1996</year>
<price>11.99</price>

</wine>

Each application of the stylesheet will pass a bodyTextSize value of “8pt” to the
stylesheet to override the default value of “10pt” shown in the stylesheet, producing
this result:

<?xml version="1.0" encoding="utf-8"?>

Duckpond Cabernet

<i>Merit Selection</i>

1996

11.99

With no bodyTextSize value passed to the XSLT processor, the size attributes
would have the default value of “8pt”.

Duckpond Cabernet

<i>Merit Selection</i>

1996

11.99

RUNNING XSLT PROCESSORS 271

For each XSLT processor covered, this appendix lists the following information:

With a Java-based XSLT processor, the program being executed from the command
line will most likely be the Java Virtual Machine (JVM). For Java processors, I used
the Blackdown (http://www.blackdown.org) JVM for Linux under Linux, and Sun’s
JVM under Microsoft Windows operating systems.

Under Windows, some Java processors such as Saxon and XT make an executable
“stub” (a small EXE File that automates the process of running the Java program) avail-
able to run the XSLT processor with Microsoft’s JVM (which comes with Internet
Explorer), so you don’t have to specify the class path and other information normally
necessary to run a Java program.

When you do run an XSLT processor by calling the JVM directly, check to see
which releases of JVMs that processor was tested with. The installation will tell you
which jar files you’ll need and where to put them.

Homepage The URI of the processor’s homepage for more information.

Platforms

Operating systems under which you can run it. If Java is listed as the plat-

form, you should be able to run the processor on any operating system

that has a Java virtual machine installed.

XML parser

used

A key reason that XSLT stylesheets are XML documents is that XSLT pro-

cessors can leave mundane parsing details to another XML parser. This

section lists the parser used and also tells you whether you can plug in

another parser.

Version tested

The release of the XSLT processor tested for this appendix. By the time you

read this, it will probably have been updated, and much of the information

here will be superseded.

Cost The cost of the processor, if any.

API or source

included

The Application Programming Interface (if available) is included so that

you can use the XSLT processor from within your programs. If the full

source code of the parser is included, that, too, is noted here.

Command line

help

What you enter at the command line to display a list of all command line

options.

Other

documentation

included

The documentation included, such as HTML or text files.

Installation

instructions

Where to find installation instructions, usually as a relative pathname. For

example, if this entry says install\readme.html and you installed the program

in a directory named c:\prog\whatever, look for the installation instructions in

c:\prog\whatever\install\readme.html. If you don’t see it there, compare the

release number of the version you’re installing with the one described here.

The location of the instructions may have changed.
272 APPENDIX B RUNNING XSLT PROCESSORS

B.2 SAXON

Running it with the samples shown:

java com.icl.saxon.StyleSheet xq338.xml xq553.xsl bodyTextSize=8pt

Michael Kay of the German database company Software AG (SAG) (and formerly of
the British software and services company ICL, which accounts for the “icl” in many
Saxon-related URIs) wrote Saxon as a collection of tools for processing XML docu-
ments. The main tool is its XSLT processor. Kay is on the W3C XSL Working
Group, and as one of the leading experts on XSLT, his XSLT processor is one of the
most popular.

Developed by Michael Kay

Homepage http://users.iclway.co.uk/mhkay/saxon/

Platforms Java; Windows executable stub included

XML parser used Microstar’s Ælfred included; others can be plugged in

Version tested 6.0.1

Cost Free

API or source included Both

Command line help java com.icl.saxon.StyleSheet -?

Other documentation

included
a directory full of HTML files

Installation instructions
See doc/index.html#Installation after unzipping the

distribution file.
SAXON 273

B.3 XT

Running it with the samples shown:

java com.jclark.xsl.sax.Driver xq338.xml xq553.xsl bodyTextSize=8pt

Along with many other tremendous contributions to the XML and SGML worlds (for
example, he came up with the name “XML”), James Clark is the editor of the XSLT
specification. XT was one of the first XSLT processors to become available, but by
now its only interest is historical. James wrote it as a proof of concept in the early days
of the XSLT 1.0 Working Draft and never updated it to implement the full XSLT 1.0
Recommendation. After he announced in November of 1999 that he would not con-
tinue work on XT, a group was formed at http://4xt.org to continue XT development
without him, because he made the source freely available.

Developed by James Clark

Homepage http://www.jclark.com/xml/xt.html

Platforms Java; Windows executable stub available.

XML parser used

Clark’s XP used as the default, but must be downloaded

from http://www.jclark.com/xml/xp. Others can be

plugged in.

Version tested 19991105

Cost Free

API or source included Both

Command line help java com.jclark.xsl.sax.Driver

Other documentation included One HTML file.

Installation instructions xt.htm
274 APPENDIX B RUNNING XSLT PROCESSORS

B.4 IXSLT

Running it with the samples shown:

ixslt -i:xq338.xml xq553.xsl -p:bodyTextSize=8pt

Infoteria’s iXSLT is the XSLT processor entry in their suite of XML processing prod-
ucts. It’s written in C++, and it’s very, very fast. Their inclusion of COM and DLL ver-
sions of iXSLT make it a good XSLT processor to incorporate into larger Windows
applications.

Unlike many other XSLT processors, it costs money, but in a workplace where
support from a software vendor is an issue to consider when purchasing software
(being a commercial software vendor, they make support available), the cost of iXSLT
should be a minor issue.

Developed by Infoteria

Homepage http://www.infoteria.com/en/contents/product/ixslt/

Platforms Windows

XML parser used (not given)

Version tested 2.0c

Cost $150 for Developer’s Edition; bulk discounts available.

API or source included
A DLL accessible from C++ programs and a COM ver-

sion are included.

Command line help ixslt -h

Other documentation included Several HTML files.

Installation instructions Readme.html
IXSLT 275

B.5 XALAN-JAVA

Running it with the samples shown:

java org.apache.xalan.xslt.Process -IN xq338.xml -XSL xq553.xsl -
PARAM bodyTextSize 8pt

According to their homepage at http://xml.apache.org, the goals of the Apache XML
project are “to provide commercial-quality standards-based XML solutions that are
developed in an open and cooperative fashion, to provide feedback to standards bod-
ies (such as IETF and W3C) from an implementation perspective, and to be a focus
for XML-related activities within Apache projects.” Much of the Xalan Java and C++
XSLT processors were originally developed at IBM before being donated to the
Apache project. (See the following page for Xalan-C++.)

Developed by Apache Software Foundation

Homepage http://xml.apache.org/xalan-j/

Platforms Java

XML parser used
Comes with the Apache Xerces parser; others can be

plugged in.

Version tested 2.0.D05 beta

Cost free

API or source included Open source

Command line help java org.apache.xalan.xslt.Process

Other documentation included Extensive HTML documentation

Installation instructions docs/getstarted.html
276 APPENDIX B RUNNING XSLT PROCESSORS

B.6 XALAN-C++

Running it with the samples shown:

testXSLT -IN xq338.xml -XSL xq553.xsl -PARAM bodyTextSize 8pt

The Apache Xalan C++ XSLT processor is very fast, and binaries are available for
Windows, Linux, and AIX. I didn’t find the tested release quite as robust as its home
page claims. For example, when running the command line shown above under
Linux, it assumed that the passed parameter was a number, and because “8pt” isn’t, it
converted the parameter to the string “NaN” for “Not a Number.” Also, its error
messages can be quite cryptic. I’m sure they’ll straighten this out. With a name like
testXSLT for the binary, I imagine that they plan to do more work on it.

I tend to use this processor first for most XSLT work because of its speed, because
they have Windows and Linux binaries available, and because I feel that the Apache
XML project is worth supporting. (See section B.5, “Xalan-Java,” page 276, for more
on the Apache XML project.) If a given stylesheet causes me problems, I’ll try it with
another processor to see if that processor’s error messages can shed more light on the
problem than Xalan C++ does. As with the Xalan Java parser, the original work on this
processor was done at IBM before they donated it to the Apache project.

Developed by Apache Software Foundation

Homepage http://xml.apache.org/xalan-c/

Platforms Windows, Linux, AIX

XML parser used Apache’s Xerces C++

Version tested 1.0.0

Cost free

API or source included Open source

Command line help testXSLT

Other documentation included Extensive HTML documentation

Installation instructions xml-xalan/c/docs/getstarted.html
XALAN-C++ 277

B.7 SABLOTRON

Running it with the samples shown:

sabcmd xq553.xsl xq338.xml $bodyTextSize=8pt

Czechoslovakia’s Ginger Alliance developed Sablotron as part of a larger application
framework product they market named Charlie. It’s written in C++, so it’s very fast.
Along with the source code, they make binaries available for Windows, Linux, and
Solaris, and report that it’s been compiled on other Unix boxes as well.

Their download page also has a Perl package that encapsulates the C API, making
it possible to do XSLT processing from within Perl programs.

Developed by Ginger Alliance

Homepage
http://www.gingerall.com/charlie-bin/get/webGA/act/

sablotron.act

Platforms
Linux, Windows NT, Solaris, FreeBSD, OpenBSD, OpenS-

erver, and UnixWare.

XML parser used

James Clark’s Expat. Download this from:

http://sourceforge.net/projects/expat. If the DLL file-

name includes its version number, rename it to

explat.dll before moving it in a directory on your

path.

Version tested 0.50

Cost free

API or source included
Open source (Mozilla Public License or Gnu Public

License)

Command line help sabcmd --help

Other documentation included Not with installation; see web page.

Installation instructions INSTALL_WIN text file
278 APPENDIX B RUNNING XSLT PROCESSORS

B.8 MSXSL

Running it with the samples shown:

msxsl xq553.xsl xq338.xml bodyTextSize=8pt

Microsoft’s free MSXSL parser is small and fast. As far as I can tell, the version I tested
only creates files with an encoding of UTF-16, and it ignored an encoding attribute
of the xsl:output method setting it to “UTF-8”. (The strings “UTF” and “encod-
ing” didn’t show up anywhere in the source code when I searched for them.)

Developed by Microsoft

Homepage
http://msdn.microsoft.com/code/sample.asp?url=/

msdn-files/027/001/485/msdncompositedoc.xml

Platforms Windows

XML parser used

msxml3.dll which as of this writing must be down-

loaded separately. Eventually, I’m sure the default

msxml.dll included with Internet Explorer will be good

enough.

Version tested 3.0

Cost free

API or source included source included

Command line help msxsl -?

Other documentation included a Word file: msxsl.doc

Installation instructions
The downloadable file is a self-extracting executable

that creates msxml.exe and msxsl.doc.
MSXSL 279

glossary
Italicized terms in each definition have their own entries in the glossary.

attribute value template When an XSLT processor sees an attribute value that is
interpreted as an attribute value template, it replaces any expression surrounded
by curly braces with the result of evaluating that expression. For example, it
replaces “{2+2}” with “4” or “{substring('abcde',4)}” with “de”.

axis A location step’s axis describes the relationship of a set of nodes to the context node
in terms of where they are on the source tree. For example, in the location step
child::wine, the child axis part tells an XSLT processor to look at the child
nodes of the context node. (The wine node test part tells us the name of the
nodes that we want in that axis.) See section 2.2, “Axes,” on page 24 for more.

comma-separated value (CSV) files A CSV file is a text file with a record on
each line and a comma separating each field of those records. A line of a CSV file
that holds a last name, first name, hire date, and salary field might look like this:

'Hill','Phil','20001122',80000

The pipe (“|”) and tab character are also popular for delimiting fields in such
files. Most spreadsheet programs and database managers can read CSV files
very easily.

context node An XPath term, in XSLT, context node generally refers to the source
tree node that the XSLT processor is currently handling. Inside of an xsl:for-
each loop, the context node is the one currently being processed by the loop;
in a template rule (and outside an xsl:for-each loop), it’s usually the node
that matched the pattern in the xsl:template element’s match attribute to
trigger the template rule.
281

expanded-name An expanded-name is an attribute or element’s name and its
name-space URI (if this namespace isn’t null) taken together. For the
xsl:stylesheet element, the expanded-name would be “http://www.w3.org/
1999/XSL/Transform” and “stylesheet.”

expression An expression is a term or combination of terms that gets evaluated by
the processor to determine what the term describes—a number, a set of nodes, a
string value, or a Boolean value. The term itself can include numbers, strings,
Boolean values, function calls, or XPath node set descriptions.

extension An extension is an addition to the set of elements or functions that
make up the XSLT language in order to let a stylesheet do more than the XSLT
specification requires. For example, if you wrote a function that could be called
from a stylesheet to return a string value of the current date, that would be an
extension function. See section 5.5, “Extensions to XSLT,” on page 143 for
more information.

formatting objects In XSL, the specific elements from the XSL namespace that
describe how to visually or aurally present the document’s information are
called formatting objects. See section 6.13, “XSL and XSLT: creating Acrobat
files and other formatted output,” on page 247 for more information.

instantiate In the world of object-oriented development, a class declaration
describes the structure and behavior of a certain class of objects. When one of
these objects (also known as an “instance” of that class) is created in memory,
we say that it’s instantiated. In XSLT, a template describes the structure of some-
thing to add to the result tree, and when an instance of that template is added to
the result tree, we say that the template is being instantiated.

instruction An instruction is an element from the XSLT namespace that tells the
XSLT processor to add something to the result tree.

literal result element An element in an XSLT stylesheet that is not in the XSLT
namespace (that is, not a special XSLT element) nor an extension element is a lit-
eral result element, and an XSLT processor will pass it along to the result tree
unchanged.

location step An XPath expression consists of one or more location steps separated
by slashes. Each location step can have up to three parts: an axis specifier, a
required node test, and an optional predicate. The XPath expression
“child::wine[@grape='Merlot']” has one step, and “wines/wine/attribute:year”
has three. See section 2.1, “Location paths, axes, node tests, and predicates,” on
page 24 for more information.
282 GLOSSARY

markup The markup is the text in a document that describes that document’s
structure and properties. In an XML document, the tags, entity references, and
declarations are the markup.

namespace A collection of element type names and attribute names is called a
namespace. A namespace declaration at the beginning of an XML document
usually gives a URI identifying a namespace (for example, http://www.w3.org/
1999/XSL/Transform for the XSLT namespace) and a namespace prefix (used
in the document), to show which elements and attributes belong to that
namespace (for XSLT, usually “xsl”). See section 4.3, “Namespaces,” on page 92
for more information.

NCName The XSLT specification defines many of the components of XSLT syntax
as NCNames, a term that comes from the W3C Namespace specification. To
simplify a little, an NCName is any name that begins with a letter or underscore
and doesn’t have a colon in it (“NC” = No Colon”). The name can’t have a
colon because it may have a namespace prefix added to its beginning, or it may
serve as a namespace prefix itself. Either way, a colon would act as a separator
between the prefix and the remainder of the name, which is why these names
on either side of the colon aren’t allowed to have colons in them. (See also
QName, on page 284).

node When a document (either a source or result document) is represented as a
tree, each component of the tree is called a node. Six kinds of nodes can be on a
tree: element nodes, attribute nodes, text nodes, processing instruction nodes,
comment nodes, and namespace nodes. The root element of one of these docu-
ments is not the root node of a source tree or result tree that holds that docu-
ment; it is the child of a root node created specifically for that tree. This way, a
comment or processing instruction outside of that root element can be repre-
sented as a sibling node on that tree.

node test The part of an XPath expression location step that names which of the
nodes in the specified axis are being addressed is called a node test. In the XPath
expression “child::title” the “title” node test shows that the expression refers to
the title elements in the child axis. In the XPath expression “preceding-sib-
ling::*” the asterisk shows that the expression refers to elements of any name in
the preceding-sibling axis. See section 2.3, “Node tests,” on page 41 for
more information.

open source Open source describes software in which the source code is freely
available to anyone who wants to examine it and make their own modifications
and contributions. Modified versions must be redistributed under the same
terms as the original version.
GLOSSARY 283

pattern Patterns are used to specify a set of conditions that a node must meet for
some action to take place on it. Pattern syntax uses a subset of XPath expressions
that limit you to using the child and attribute axes. In XSLT, they are
most often used in the match value of xsl:template template rules. They
are also used in the xsl:key element’s match attribute and the xsl:num-
ber element’s count and from attributes.

predicate A predicate is an optional part of an XPath expression’s location step that
specifies a condition for filtering out some of the nodes selected by the axis and
node test parts of the location step. For example, in the one-step XPath expres-
sion “child::wine[@grape='Merlot']”, the predicate in square brackets shows
that, of all the context node’s children that are wine elements, we want only the
ones with a grape attribute value of “Merlot”. See section 2.4, “Predicates,” on
page 43 for more information.

principal node type A principle node type is the type of node in a source tree or
result tree to which a particular axis refers. The attribute axis refers to a set
of attribute nodes: the namespace axis refers to namespace nodes, and the
other axes all refer to element nodes. Knowing an axis’s principal node type is
how you can tell that while the XPath expression ancestor::price selects all
the price elements that are ancestors of the context node, the XPath expression
attribute::price, on the other hand, refers to a price attribute of the
context node.

QName A QName is a “Qualified Name” that includes an optional namespace pre-
fix and colon before a required “local part,” which is an NCName. For example,
the value of an xsl:template element’s name attribute is a QName. A
QName can be a simple name like “glossaryEntry” or it can include a namespace
prefix and colon, as with “snee:glossaryEntry”.

result tree A result tree is a tree structure in memory where an XSLT processor
assembles the result of its transformation. Most XSLT processors can also write
out this tree as a file that would be considered the output document, although
they are not required to do so. See also source tree.

sibling In a tree structure, one node’s sibling node is any other node that has the
same parent node.

source tree A tree structure of nodes in memory that stores the input document is
called a source tree. An XSLT processor goes through this tree, applying any rel-
evant template rules in the stylesheet to each node, and stores the result in the
result tree. Most XSLT processors can read a document from a disk file or com-
munications connection into this source tree, although they are not required to
do so. See also result tree.
284 GLOSSARY

stylesheet In XSLT, a stylesheet is a set of instructions describing the transforma-
tion of XML documents of a particular document type. This set of instructions
is stored in a specialized XML document with the stylesheet element from
the http://w3.org/1999/XSL/Transform namespace as the document element.

template The part of a template rule that gets evaluated for addition to the result
tree is called the template. A template may contain XSLT instructions, extension
elements, and literal result elements.

template rule A template rule is the basic building block of an XSLT stylesheet,
represented by an xsl:template element in the stylesheet. A template rule
has two parts: a match pattern (the value of the xsl:template element’s
match attribute), which describes the source tree nodes to which the rule applies
and a template (the contents of the xsl:template element) to add to the
source tree when such a node is found.

top-level element A top-level element is a special XSLT stylesheet element (that
is, an element from the http://w3.org/1999/XSL/Transform namespace) that is a
child of the stylesheet’s xsl:stylesheet document element. Except for
xsl:template, which specifies a template rule for the stylesheet, the other
top-level elements specify general instructions about the stylesheet such as glo-
bal variables, other stylesheets to import, and instructions about storing the
output. Nearly all XSLT elements that are not top-level elements are used in the
templates within the template rules.

URI Uniform Resource Identifiers (URI) are the system for naming resources on the
web. Web address URLs such as http://www.snee.com are the most common
form of URIs.

W3C The World Wide Web consortium (W3C) is a group of companies and uni-
versities around the world working to develop and promote common protocols
for use on the web.

well-formed XML document A well-formed XML document is an XML docu-
ment that conforms to the basic structural rules of an XML document as
described by the W3C XML specification. For a well-formed document to also
be a valid XML document, it must specify a DTD or schema of rules about the
structure of documents of that particular document type (that is, it must specify
a list of rules about subelements that can make up each element and the
attributes that go with each element) and it must conform to that structure.

XPath Sometimes, when processing one part of a source document tree, you want
the XSLT processor to get some information from another part of the docu-
ment. The mini-language developed as part of XSLT for specifying the path
through the document to the required information is called “XPath.” XPath lets
you say things like “get the revisionDate attribute value of the element
GLOSSARY 285

before the context node element’s chapter ancestor element.” XPath proved
useful enough that the W3C split it into a specification separate from XSLT so
that other specifications can more easily take advantage of it. See chapter 1, "A
brief tutorial," on page 3, for more information.

XSL The Extensible Stylesheet Language (XSL) is a W3C standard for specifying the
visual or audio presentation of an XML document. “Visual presentation” refers
to details such as fonts, margins, bolding, italicizing, and other page layout
issues. Audio presentation refers to the pitch, speed, volume, and other parame-
ters of a spoken voice communicating a document. XSLT, which specifies trans-
formations to an XML document, began as part of the XSL specification before
being split out into its own spec. See chapter 1, "A brief tutorial," on page 3,
and section 6.13, “XSL and XSLT: creating Acrobat files and other formatted
output,” on page 247, for more information.

XSLT Extensible Stylesheet Language Transformation (XSLT) is a W3C specifica-
tion specifying an XML-based language for describing the transformation of
XML documents into other XML documents, HTML documents, or any desired
text format. See chapter 1, "A brief tutorial," on page 3, for more information.

XSLT processor An XSLT processor is a program that can apply an XSLT stylesheet
to an XML document stored in a source tree and then create a result tree based on
the transformation instructions stored in that stylesheet. Typical XSLT processors
can also read an XML document into the source tree and write out the result of
the source tree as an output file.
286 GLOSSARY

index
Symbols

< 113
* in content models 260
+ in content models 260
. abbreviation 39, 147, 154

as default sort key 181
.. abbreviation 24, 26

accessing sibling nodes with 53
../.. abbreviation 45
/ abbreviation 24
// abbreviation 38
< 113
? in content models 260
@ abbreviation 14, 24, 26
{} See curly braces
| in content models 260

A

aborting stylesheet execution 135
Acrobat xiv, 249

files 247
adding numbers

with sum() function 151
adding numbers with + operator 150
Ælfred XML parser 273
AIX 277
aligning text 168
ancestor

axis 121
elements, listing 139

ancestor-or-self axis 28
and Boolean operator 113
Apache Software Foundation 12, 249, 276
API 278

to XSLT processor 272
arithmetic 149
attribute axis 25, 41
@ abbreviation 26

attribute value
nodes 184
testing with xsl:if 112

attribute value template 14, 56, 78, 116
defined 281
variables and parameters 166
XSLT specification and 117

attributes
adding with xsl:attribute 78
converting to elements 15, 79
deleting when copying 14
getting values and names 80
renaming when copying 14
reusing groups of 82
selecting elements with attribute not set 44
sorting by 219
testing for existence 81
testing value of 81

axes
listed 24

axis
ancestor-or-self 28
attribute 25, 41
287

axis (continued)
child 25
defined 24, 281
descendant 35
descendant-or-self 35, 37
following 32
following-sibling 29
namespace 40–41
parent 25
preceding 32
preceding-sibling 29
self 39

axis specifiers 26, 118, 185

B

Balise 5
biggest value, finding 181
Blackdown JVM 272
Boolean expressions

in predicate 43
xsl:if and 113

boolean-expression 117
Brown, Mike J. 161
browsers

HTML and 190
XSLT and 192

built-in template rules 12, 52, 56, 58, 137
not relying on 137
shown 225

C

C 186
C++ 5, 118, 133

XSLT processor 275
Candidate Recommendation 183
carriage returns 107, 206, 229, 232, 238

adding 93
preventing 205
See also xsl:text
skipped numbers and 215

case conversion 159
case statements 110

(xsl:choose) 114
ceiling() function 151

characters
mapping with translate() function 156

child axis 25
abbreviation 26

child subelement
testing for 113

Clark, James 274, 278
colons 185
COM XSLT processor 275
combining elements 69
command line XSLT processor 192
command prompt

running XSLT processor from 269
commas

adding to a list 139
as separator in large numbers 208

comma-separated value (CSV) files
defined 281

comment 42
adding to your result tree 84
converting to elements 86
nodes 60, 184
reading from source tree 86

comment() node test 86
concat() function 155, 162
constants and variables 164, 166
contains() function 75, 136, 155, 162
content, reusing 202
context node 39, 113, 185

defined 24, 281
control statements 110
copying tags, attributes, and contents 70
count attribute of xsl:xsl-number 209–

210
count() function 61, 113, 151
counting

comments and other nonelement nodes 63
elements 61
elements and subelements 113
elements with a particular attribute set 62
nodes 61

CSV files 204
curly braces 14, 26, 56, 115, 166

variables and parameters 166
when selecting attribute values 77
XSLT specification and 117
288 INDEX

D

dates, sorting by 219
debugging 133
default template rules. See built-in template rules
deleting

an element when copying 10
duplicate elements 64
elements 13, 63
extra whitespace 68

descendant axis 35, 120
descendant-or-self axis 35

abbreviation 38
disabling output escaping 90
div operator for division 151
dividing numbers 150
DLL XSLT processor 275
DocBook xiv, 130

use of xsl:include 128
DOCTYPE declaration 183, 225

adding to result tree 226
creating 91
special characters and 90

doctype-system attribute 88
of xsl:output 91

document
input 6
output 6
tree vs. 184

document element
document root vs. 183

Document Object Model. See DOM
document type 227
document() function 195–196

resetting parameters and 173
template rules and 196
xsl:include and xsl:import vs. 197

DOM 6
tree 183–184

DSSSL 122
DTD 3, 17, 105

content model syntax 259
declarations 225
internal subset 88

E

ecommerce 1
element names

changing for the result tree 50
element-available() function 145–146
elements 184

adding new elements to result tree 47
comparing 158
converting to attributes 15, 55
converting to processing instruction 107
copying to the result tree 57
counting 61
deleting duplicate 64
deleting when copying 13, 63
identical 64
instructions vs. 184
moving and combining 69
moving when copying 13
nodes vs. 184
reordering 121
selecting by children 74
selecting by content 75
selecting by name 72
selecting by parent 73
selecting regardless of namespace 102
string value 64
with no text 44

empty elements 10
checking for 68
creating 67
in HTML 190

empty stylesheets 12
entities

defined 87
in stylesheets 237
in the result tree 88
in the source tree 88
parsed vs. unparsed 88
structure 184
unparsed 104

ENTITY attribute type 105
error messages 145

generating 136
escaping 224
exclude-result-prefixes attribute 95,

104, 148
INDEX 289

expanded-name 185
defined 282

Expat 278
expression

defined 282
in xsl:variable elements 166
pattern vs. 183

Extensible Stylesheet Language Transformations 3
Extensible Stylesheet Language. See XSL
extension 94

defined 282
extension attributes 144
extension elements

defined 143
namespace 97

extension functions 146
extension-element-prefixes

attribute 143, 146
of other elements 144
of xsl:stylesheet element 143

F

fallback 145
files as input and output 11
finding the first, last, biggest, and smallest 178
first

(alphabetically), finding 180
sibling 53
value, finding 178

floor() function 151
fo namespace prefix 8, 248
following axis 32
following-sibling axis 29

vs. .. abbreviation 53
FOP 249
for loops 118

while loops vs. 124
with named template recursion 122

formatting objects 4, 248
defined 282

FreeBSD 278
from attribute of xsl:xsl-number 209
function call

in variable creation 166
function-available() function 147

functions
ceiling() 151
concat() 155, 162
contains() 75, 136, 155, 162
count() 61, 113, 151
document() 173, 195–197
element-available() 145–146
floor() 151
function-available() 147
generate-id() 77, 200, 243
key() 173–174, 177–178, 199
last() 44, 54, 151, 179
local-name() 101–102
name() 52, 80, 100–101
named templates as 133, 170
namespace-uri() 101
normalize-space() 156, 159, 242
normalize-string() 68
not() 44, 136
position() 44, 139, 151, 214
predicates and 44
processing-instruction() 108
round() 151
starts-with() 155
string-length() 151, 155, 168
substring() 116–117, 154, 157
substring-after() 154, 162
substring-before() 154
sum() 151
text() 44
tokenize() 147
tokenize() (Saxon XSLT processor) 148
translate() 156, 159–160, 164
unparsed-entity-uri() 105
xsl:import and document() function 197
xsl:include and document() function 197

G

general entities 237
xsl:include vs. 127

generated lists 199
generate-id() function 77, 200, 243
Ginger Alliance 278
global string replacement 160
GNU Public License 278
290 INDEX

grandparent
elements 50
node 45

grouping-separator attribute of
xsl:xsl-number 208

grouping-size attribute of
 xsl:xsl-number 208

H

href attribute of xsl:include 126
HTML xiii
a element 103, 200
as input 188
as output 190
browser compatibility 190
document type declarations and 227
empty elements 190
from an XLink document 103
from DocBook document 130
generating links 246
img element 104–105
multiple output files 253
namespace 92
rarely well-formed 188
special characters in 89
specifying stylesheet with processing

instruction 107
tables in input 188
XSLT and 187

HTML Tidy program 188
hyphens, printing multiple 123

I

IBM 12
ICL 273
identity stylesheet 230, 233
IDs, generating 243
if statements 110
image files 104
indenting 120, 233

not indenting stylesheets 241
suppression of 204

industry standard schemas 1
Infoteria 275
inline elements in XSL 251

input document
multiple 195
source tree as 6

instantiate 185
defined 282

instruction 10
defined 282
elements 143, 259
XSLT elements vs. 184

integers and nonintegers 150
internal DTD subset 225, 228
Internet Explorer 194
ISO 122
iteration 118
iXSLT 275

J

Java 5, 118, 133, 186, 273–274, 276
libraries and long command lines 170
library as XSLT processor 11

Java-based XSLT processors 272
JPEG image files 104
JVM release 272

K

Kay, Michael 273
key() function 173–174

ability to return multiple nodes 177
context node, external document and 199
returning nothing 178

keys 173
multiple sort 218

L

lang attribute of xsl:xsl-number 208
last

alphabetically, finding 180
sibling 53
value, finding 178

last() function 44, 54, 151, 179
less-than symbol in xsl:if test 113
letter-value attribute of xsl:xsl-
number 208

level attribute of xsl:xsl-number 208, 212
linefeed 229
INDEX 291

Linux 269, 272, 277–278
LISP 118, 122
literal result elements 10, 143

defined 48, 282
local parameters 170
local variables 167, 186
local-name() function 101–102
location path

defined 24
location step 24, 185

defined 282
three parts 24

lookup keys
in a separate document 178

lookups 173
in external documents 197

loops 118

M

mapping characters with translate() 156
markup

defined 283
stripping 224

match attribute of xsl:template element 9,
132

match conditions
xsl:if vs. 111

match patterns
XPath expressions vs.

See also patterns 121
matching any element 10
math 149

in variable creation 166
mathematical calculations 116
method attribute of xsl:output 226

“html” value 228
“text” value 202, 204, 224, 227–228
“xml” value 226, 228

Microsoft 279
JVM 272
Word 203
XML/XSLT processor, xsl:message and 134

Milton, John xiv
mod operator 151
modes 199

moving
elements 13, 69
text 71

Mozilla 194
Mozilla Public License 278
msxml.dll 194
msxml3.dll 134, 279
MSXSL 279
multiple

input documents 195
output documents 253

multiple output of same node 199
multiplying numbers 150

N

name attribute
of xsl:template element 132

name() function 52, 80, 100–101
named templates 132, 152

parameters and 171
passing parameters to 133
recursive 160

namespace 5, 8
attribute of xsl:element 96
axis 40–41, 100
declaration, suppressing in result document 95
defined 92, 283
formatting object 8
nodes 184
prefixes 8
prefixes, in result document 94, 98
result document and 94
selecting elements by 101
specification 182, 185
XSLT 92

namespace nodes 60, 95
listing 100

namespace prefixes
substituting 97

namespace-uri() function 101
NameTest 185
NaN ("Not a Number") 151
NCName 185

defined 283
NDATA entities 105
nested elements, numbering 208
292 INDEX

Netscape Navigator 194
next sibling 53
nmtoken 186
node 7

defined 283
element vs. 184
element, attribute and other types 184
grandparent 45
root 8
sibling 8
text 7

node list
listing out 142
number of nodes 44

node sets
xsl:for-each and 118

node test 26, 46, 118, 185
comment() 86
defined 41, 283
node() 39

node type 41
predicate and 46

node() node test 26, 39, 42
node-set-expression 117, 186
non-XML output 202
normalize-space() function 156, 242

string comparison and 159
normalize-string() function 68
not() function 44, 136
NOTATION declaration in DTD 105
number-expression 117
numbering, automatic 205

multi-level numbering 208
processor efficiency and 214
restarting 213
skipped numbers 215

numbers 149
rounding off 151

O

OASIS xiv
omit-xml-declaration attribute of
xsl:output 202, 229

Omnimark 5
open source, defined 283
OpenBSD 278

OpenServer 278
operating systems

of XSLT processors 272
or Boolean operator 113
output document, result tree as 6
output escaping 203

P

page margins, setting in XSL 251
Paradise Lost xiv
parameters 169

dollar sign in 166
local 170
passing to XSLT processor 270
reporting value with xsl:message 135
resetting value of 170

parent axis 25
.. abbreviation 26

parent elements 50
parentheses

Boolean expressions and 113
mathematical expressions and 151

parsed entities 88
patterns 10, 184

defined 10, 284
expression vs. 183
XPath and 23

PCDATA 12
PDF files 249
Perl 5, 147, 259, 270, 278
pi, calculating with XSLT 151
position() function 44, 139, 151, 214
potrzebie 101
preceding axis 32
preceding-sibling axis 29

vs. .. abbreviation 53
predicate 15, 41, 185

Boolean expressions in 43
conditions 118
defined 43, 284
numbers in 44, 54

previous sibling 53
principal node type 41

defined 284
processing instructions 42, 106, 226

adding to result tree 106
INDEX 293

processing instructions (continued)
converting elements into 107
copying from source to result tree 108
in sample code xiii
nodes 60, 184
reading from source tree 108
selecting by target 108
target 106, 228
to identify a stylesheet 192
XML declarations and 228

processing-instruction() function 108
Proposed Recommendation 183
PUBLIC identifier 226
push vs. pull stylesheets 133
Python 5, 270

Q

QName 186
Qualified Name 186
quotation marks

resetting parameters and 172
single vs. double 112

R

Raggett, Dave 188
recommendation defined 183
recursion 118, 122, 133

calculating pi with 152
defined 124
history of 122
infinite 124

recursive named templates 160
redirecting output 270
relational database lookups vs. xsl:key 176
renaming an element when copying it 9
reordering elements 121
result document

as stylesheet 97
result tree 9, 269

defined 284
root 183

Roman numerals, numbering with 205
root

of document 183
source tree 251

round() function 151
RTF file, creating 202
running XSLT processors 269

S

Sablotron XSLT processor 135, 270, 278
SAG 273
sample code

downloading xiii
processing instructions in xiii

SAX 7
Saxon XSLT processor 272–273

extensions 144
passing parameters to 170
tokenize() function 148
trace output 142

saxon:assign element 144
saxon:assignable attribute 144
schemas 3, 17
Scheme programming language 122
search and replace 160
select attribute of xsl:apply-templates 13
selecting elements 72
self axis 39
SGML ix, 5, 122
sibling

defined 284
getting the value of 52

sibling elements 50, 53
sibling node

attributes of 55
defined 29

side effect free language 122
slash character 151
smallest value, finding 181
Solaris 278
sorting 215

alphabetical, numeric 217
by attribute value 219
by date 219
by grandchild element 220
in an xsl:for-each 222
multiple sort keys 218
numeric 181
reverse order 218

source tree 9, 269
294 INDEX

source tree (continued)
defined 284
root 183

space, inserting 223
special characters 87
splitting output into multiple files 253
square brackets 15, 43
starts-with() function 155
stopping condition 162

in recursion 124
string-expression 117
string-length() function 151, 155, 168
strings

comparing 158
searching for in document 75

stylesheets 3
as XML documents 8, 236
browsers and 192
combining 126
complexity, controlling 126, 137
debugging 133
defined 285
empty 12
not indenting 241
push vs. pull 133
result document as XSLT stylesheet 97
specifying HTML stylesheet with processing

instruction 107
subroutines

named templates as 170
substring() function 116–117, 154, 157
substring-after() function 154, 162
substring-before() function 154
substrings

checking for with contains() 155
subtracting numbers 150
sum() function 151
switch statements 111, 114
SYSTEM identifier 91, 226

T

tab characters 229
adding to result tree 239

table of contents, creating 199
tags, stripping 224
Tauber, James 249

template
built-in 12
defined 285
instantiating 185
named. See named templates
order in stylesheet 10
overriding 128
precedence 10
recursion 122
template rule vs. 184

template rule 10
as xsl:template element 9
context node and 185
defined 285
multiple template rules for same node 199
template vs. 9, 184

template See also built-in template rules
terminate attribute of xsl:message 135
text content 44, 224
text nodes 7, 60, 184
text() 157
text() function 44
token 186
tokenize() function (Xalan) 147
top-level 186
top-level elements 108, 143, 184, 259

defined 285
xsl:comment as 85
xsl:include as 128

top-level variables 167, 186
trace output 140
TransforMiiX 194
translate() function 156, 159–160, 164
trees

document vs. 6, 184
nodes 7
root element vs. root node 8
source and result 7, 9
source vs. result 6

tt element, HTML 131

U

uncle elements 50
Uniform Resource Identifiers. See URI
UNIX

shell script for stylesheet execution 170
INDEX 295

UnixWare 278
unparsed entity 104, 106

filename of 105
unparsed-entity-uri() function 105
URI

defined 285
of element’s namespace 101
URL vs. 184

URL
URI vs. 184

utf-16 229
utf-8 229

V

valid XML document 225
variables 164

curly braces and 116
debugging and 134
dollar sign in 166
global 167
local 167
numeric 166
referring to other variables 166
top-level 186

Visual Basic 5, 118, 133

W

W3C 3, 182, 188, 247, 253
defined 285
standards 5

W3C Recommendation
"Associating Style Sheets with XML

Documents" 192
Walsh, Norm 130
web browser

XSLT processor in 269
well-formed documents

XHTML as 187
well-formed XML documents 183

defined 285
valid documents vs. 225

while loops 125
whitespace 8

adding and removing with xsl:text 236
deleting 68, 241

whitespace (continued)
in sample code xiv
normalizing 241
preserving and controlling 229
stripping 204
stripping with normalize-space()

function 156
Windows operating system 130, 273–275, 277,

279
batch file for stylesheet execution 170
NT 278

Working Draft 183
World Wide Web Consortium. See W3C

X

Xalan Java XSLT processor 276
Xalan XSLT processor 11, 90, 145
tokenize() function 147
trace output 141

Xalan-C++ 277
Xerces C++ 277
Xerces XML parser 276
XHTML 187

document type declarations and 227
XLink 104

converting to HTML 103
document, creating 94
XPath and 23

XML 122
basics xii
declarations 13–14, 228
non-XML output 202
origin of name 274
outputting valid documents 225
parser 88
parser used by XSLT processor 272
specification 182
stylesheets as XML documents 236

XML declarations
suppressing 229

xml:lang attribute 28
xmlns attribute 92
XP XML parser 274
XPath 4, 118

abbreviations 24
attribute value templates in 57
296 INDEX

Xpath (continued)
defined 23, 285
functions 44
math capabilities 149
specification 182

XPath expressions 183
listing nodes 142
match patterns vs. 121
multi-step expression and finding nodes 179
resetting parameters and 173

XPointer 4
XPath and 23

XSL
defined 286
inline elements 251
processor 249
XSLT and 4, 247

xsl 110
as namespace prefix 8, 93
output 91
value-of

adding attribute values 78
XSL specification 253
xsl:apply-imports 263
xsl:apply-templates

empty vs. non-empty 217
select attribute 69
with no attributes 13
xsl:copy vs. 50
xsl:sort and 216

xsl:attribute 78
namespace attribute 96
position in xsl:element 79

xsl:attribute-set 82, 260
xsl:call-template 132, 263

no variables in name attribute 172
resetting parameters with 171
template recursion and 124

xsl:choose 111, 114
xsl:comment 84, 263

as top-level element 85
xsl:copy 10, 58

attributes and 58
xsl:apply-templates vs. 50

xsl:copy-of 59, 264
xsl:copy vs. 59

xsl:copy-of (continued)
xsl:for-each vs. 122
xsl:value-of vs. 59

xsl:decimal-format 260
xsl:document 253, 264
xsl:element 264

literal result element vs. 49
namespace attribute 96

xsl:fallback 145, 264
xsl:for-each 118–119, 265

context node and 185
for listing XPath expression nodes 143
numbering and 206
sorting and 222
vs. xsl:value-of for getting a node set 121
xsl:template vs. 118

xsl:if 110–111, 265
no "else" for xsl:if 114
template recursion and 124

xsl:import 128, 266
document() function vs. 197
place in stylesheet 130
xsl:include vs. 130

xsl:include 126, 261
include

document() function vs. 197
xsl:import vs. 130

xsl:key 173–174, 198, 261
xsl:message 134, 145, 265
xsl:namespace-alias 97, 261
xsl:number 205, 265

processor efficiency and 214
xsl:otherwise 266

in xsl:choose 114
xsl:output 90, 261
doctype-public attribute 227
doctype-system attribute 226
encoding, version attributes 229
HTML and 107
indent attribute 233
omit-xml-declaration attribute 229

xsl:param 133, 262
template recursion and 124
xsl:variable vs. 169

xsl:preserve-space 232, 262
xsl:processing-instruction 106, 265
INDEX 297

xsl:sort 117, 122, 215, 266
xsl:strip-space 185, 230, 262
xsl:stylesheet 267

exclude-result-prefixes attribute 148
extension-element-prefixes

attribute 144
modes and 200
tags 127
top-level elements and 186

xsl:template 262
name attribute as QName 186
repeating 202
template rule 9, 184

xsl:text 71, 236, 266
adding carriage returns with 120, 237
avoiding carriage returns with 238
child elements forbidden 108
disable-output-escaping attribute 90
suppressing carriage returns with 121

xsl:transform 8, 267
xsl:value-of 15, 71, 266

attribute values and 55
node lists and 31
selecting current node’s contents with 81
vs. xsl:for-each for getting a node set 121

xsl:variable 166, 263, 266
select attributre vs. element contents 167

xsl:when 267
in xsl:choose 114

xsl:with-param 171, 267
resetting parameters with 171

XSLT
browsers and 192
creating XSL formatting objects with 249
defined 3, 286
DSSSL and 122
extensions 94, 143
not a formatting language 230
stylesheet 3
XSL and 247

XSLT namespace 92, 143
elements outside 47

XSLT processor 47, 132
aborting execution with xsl:message 135
command line 192
defined 286
input and output 11
running 269
trace output for debugging 140
XML parser and 88
XSLT namespace and 97

XSLT Recommendation 182
XSLT specification

curly braces and 117
indenting and 234
resetting parameters and 170
See also XSLT Recommendation
using 182

XT 272, 274

Z

zeros, padding with 207
298 INDEX

3D User Iterfaces with Java 3D

Jon Barrilleaux
Softbound, 528 pages, $49.95, August 2000
ISBN 1-884777-90-2

Ebook Edition
PDF files 14 MB, $13.50
Ebook edition only available from publisher’s site:
www.manning.com/barrilleaux

A practical guide on how to design and implement the
next generation of sophisticated 3D user interfaces on
present-day PCs without exotic devices like head-
mounted displays and data gloves.

Written for user-interface designers and program-
mers, the book systematically discusses the problems and
techniques of letting users view and manipulate rich,
multidimensional information. It teaches how to tackle
the design challenges of 3D user interfaces which sup-
port such tasks as e-commerce, product configuration,
system monitoring, and data visualization.

“Jon Barrilleaux should be given a standing ovation for
producing such an excellent piece of work for a topic (Java
3D) that desperately needs more documentation.”

—j3d.org

OTHER MANNING TITLES

For ordering information visit www.manning.com

Web Development with JavaServer Pages

Duane K. Fields and Mark A. Kolb
Softbound, 584 pages, $44.95, April, 2000
ISBN 1-884777-99-6

Ebook edition
PDF files, 14 MB, $13.50
Ebook edition only available from publisher’s site:
www.manning.com/fields

This best-selling book will teach you how to create dy-
namic content—personalized, customized, and
up-to-the minute—a key ingredient of site development
on the World Wide Web today. It covers all aspects of
JSP development, as well as comparisons to similar dy-
namic content systems such as CGI, Active Server Pages,
Cold Fusion, and PHP. It clearly demonstrates the ad-
vantages offered by JSP as a full-featured, cross-platform,
vendor-neutral technology for dynamic content genera-
tion.

Full coverage of JSP 1.1 syntax teaches beginners
the basics. More advanced readers can jump straight
into techniques for mixing databases and web pages,
how to make an elegant and scalable architecture, and
even subtleties such as how JSP helps to better divide
the labor between page designer and programmer. De-
tailed code and good design techniques are included, as
well as complete reference materials on JSP tags and
the JSP API.

“...the best offering, head and shoulders above the rest for
both the Web designer and the Java developer interested in
picking up JSP skills. None of the other JSP books offer the
same depth of coverage on the different JSP topics.”

—JavaWorld

OTHER MANNING TITLES

For ordering information visit www.manning.com

Server-Based Java Programming

Ted Neward
Softbound, 592 pages, $49.95, July 2000
ISBN 1-884777-71-6

Ebook edition
PDF files, 7 MB, $13.50
Ebook edition only available from publisher’s site:
www.manning.com/Neward3

Java programming seen from the enterprise-wide view.
Shows how to turn nuts-and-bolts J2EE techniques to-
ward enterprise-wide goals such as fault tolerance,
scalability, and less new development on each project.
Techniques demonstrate how business development in
Java can approach the fabled Three Zeroes: Zero De-
velopment, Zero Deployment, and Zero Administration.

“This book covers everything: threads, control, extensions,
classloaders, sockets, servlets, persistence, objects, architec-
ture, design—everything. Written for experienced
programmers to take them to new heights in programming
practices and design...”

—Swynk.com

OTHER MANNING TITLES

For ordering information visit www.manning.com

	contents
	preface
	acknowledgments
	about this book
	Part 1 Getting started with XSLT
	A brief tutorial
	1.1 What is XSLT (and XSL, and XPath)?
	1.1.1 XSLT and alternatives
	1.1.2 Documents, trees, and transformations

	1.2 A simple XSLT stylesheet
	1.2.1 Template rules
	1.2.2 Running an XSLT processor
	1.2.3 An empty stylesheet

	1.3 More element and attribute manipulation
	1.3.1 Manipulating attributes
	1.3.2 Attribute value templates

	1.4 Summing up the tutorial

	Part 2 XSLT user’s guide: How do I work with...
	XPath
	2.1 Location paths, axes, node tests, and predicates
	2.2 Axes
	2.2.1 The child, parent, and attribute axes
	2.2.2 ancestor and ancestor-or-self
	2.2.3 preceding-sibling and following-sibling
	2.2.4 preceding and following
	2.2.5 descendant and descendant-or-self
	2.2.6 self
	2.2.7 namespace

	2.3 Node tests
	2.4 Predicates

	Elements and attributes
	3.1 Adding new elements to the result tree
	3.2 Changing element names for the result tree
	3.3 Parent, grandparent, sibling, uncle, and other relative elements: getting their content and a...
	3.4 Previous, next, first, third, last siblings
	3.5 Converting elements to attributes for the result tree
	3.6 Copying elements to the result tree
	3.7 Counting elements and other nodes
	3.8 Deleting elements from the result tree
	3.9 Duplicate elements, deleting
	3.10 Empty elements: creating, checking for
	3.11 Moving and combining elements for the result tree
	3.11.1 Reordering an element’s children with xsl:apply-templates
	3.11.2 Moving text with xsl:value-of

	3.12 Selecting elements based on: element name, content, children, parents
	3.13 Adding new attributes
	3.14 Converting attributes to elements
	3.15 Getting attribute values and names
	3.16 Testing for attribute existence and for specific attribute values
	3.17 Reusing groups of attributes

	Advanced XML markup
	4.1 Comments
	4.1.1 Outputting comments
	4.1.2 Reading and using source tree comments

	4.2 Entities
	4.3 Namespaces
	4.3.1 Namespaces and your result document
	4.3.2 Namespaces and stylesheet logic

	4.4 Images, multimedia elements, and other unparsed entities
	4.5 Processing instructions
	4.5.1 Outputting processing instructions
	4.5.2 Reading and using source tree processing instructions

	Programming issues
	5.1 Control statements
	5.1.1 Conditional statements with “If“ and “Choose“ (case) statements
	5.1.2 Curly braces: when do I need them?
	5.1.3 “For” loops, iteration

	5.2 Combining stylesheets with include and import
	5.2.1 xsl:include
	5.2.2 xsl:import

	5.3 Named templates
	5.4 Debugging
	5.4.1 Runtime messages, aborting processor execution
	5.4.2 Keeping track of your elements
	5.4.3 Tracing a processor’s steps
	5.4.4 Listing the nodes in an XPath expression

	5.5 Extensions to XSLT
	5.5.1 Extension elements
	5.5.2 Using built-in extension functions

	5.6 Numbers and math
	5.7 Strings
	5.7.1 Extracting and comparing strings
	5.7.2 Search and replace

	5.8 Variables and parameters: setting and using
	5.8.1 Variables
	5.8.2 Parameters

	5.9 Declaring keys and performing lookups
	5.10 Finding the first, last, biggest, and smallest
	5.11 Using the W3C XSLT specification
	5.11.1 Pairs of confusing related terms
	5.11.2 Other confusing terms

	Specialized input & output
	6.1 HTML and XSLT
	6.1.1 HTML as input
	6.1.2 HTML as output

	6.2 Browsers and XSLT
	6.2.1 Internet Explorer
	6.2.2 Netscape Navigator

	6.3 Multiple input documents
	6.4 Using modes to create tables of contents and other generated lists
	6.5 Non-XML output
	6.6 Numbering, automatic
	6.7 Sorting
	6.8 Stripping all markup from a document
	6.9 Valid XML output: including DOCTYPE declarations
	6.10 XML declarations
	6.11 Whitespace: preserving and controlling
	6.11.1 xsl:strip-space and xsl:preserve-space
	6.11.2 Indenting
	6.11.3 Adding and removing whitespace with xsl:text
	6.11.4 Adding tabs to your output
	6.11.5 Normalizing space

	6.12 Generating IDs and links
	6.13 XSL and XSLT: creating Acrobat files and other formatted output
	6.14 Splitting up output into multiple files

	Part 3 Appendices
	XSLT quick reference
	A.1 Top-level elements
	A.2 Instructions
	A.3 No category

	Running XSLT processors
	B.1 Running XSLT processors
	B.2 Saxon
	B.3 XT
	B.4 iXSLT
	B.5 Xalan-Java
	B.6 Xalan-C++
	B.7 Sablotron
	B.8 MSXSL

	glossary
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

